Теплопроводность стали при различных температурах

Теплопроводность металлов

Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов – один из параметров, определяющих их эксплуатационные возможности.

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Коэффициент теплопроводности металлов при температура, °С

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Читать еще:  Тугоплавкий припой температура плавления

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Теплопроводность сталей: общее понятие и некоторые значения

Для того чтобы проводить какую-либо работу с различными материалами, перед их обработкой обязательно нужно узнать все данные, касающиеся характеристик материала, его физические свойства.

Ниже будет рассмотрен такой материал, как сталь. Внимание будет заострено на такой способности материалов, как теплопроводность. Это показатель, который обязательно надо знать, если предполагается работа с любым материалом.

Понятие «теплопроводность»

Для начала следует разобраться в самом понятии «теплопроводность». Это поможет пользователю легче лавировать среди сухих цифр и оперировать ими. Для того чтобы провести определённую работу, следует основательно подойти к делу и разузнать все возможные характеристики того материала, с которым впоследствии будет работать пользователь.

Теплопроводностью называют такую способность различных материальных тел к теплообмену (переносу энергии) к менее нагретым частям тела от его более нагретых частей. Этот процесс возможен, благодаря различным частицам тела, которые хаотически движутся. Такими частицами являются:

  • молекулы;
  • атомы;
  • электроны и так далее.

Такой теплообмен возможен во всех телах, в которых наблюдается неоднородное распределение температурных показателей. Сам механизм переноса тепла будет напрямую зависеть от агрегатного состояния рассматриваемого материала.

Также термин «теплопроводность» применяется для обозначения количественной характеристики способности любого физического тела проводить тепло. Если сравнивать тепловые цепи с цепями электрическими, то такой термин является аналогом проводимости.

Для того чтобы охарактеризовать количественную способность физического тела проводить тепло, используется специальная величина, которая именуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, которое проходит через образец материала, обязательно однородного, единичной площади и единичной длины за единицу времени при единичной разнице температур. В известной всем системе СИ такая величина измеряется в Вт/(м*градус Цельсия).

Само явление теплопроводности зиждется на принципах, которые с лёгкостью объясняет молекулярно-кинетическая теория. Они заключаются в том, что нагретые молекулы двигаются намного быстрее, чем молекулы, пребывающие в своём обычном состоянии, поэтому при своём быстром хаотическом движении они способны влиять на другие молекулы, находящиеся в более холодных частях тела и передавать им своё тепло.

Теплопроводность стали

Для того чтобы оперировать полученными знаниями о теплопроводности материалов для последующей работы с ними, следует учитывать все существующие нюансы для отдельного физического тела.

Если говорить именно о стали, то следует помнить, что данная характеристика этого металла снижается, если содержит в себе примеси различного рода. Можно привести даже конкретные примеры, которые могут подтвердить этот общеизвестный факт. Например, если в стали увеличено содержание углерода, то это отрицательно сказывается на коэффициенте теплопроводности стали. У легированных сталей этот коэффициент ещё ниже из-за присадок.

Если рассматривать чистую сталь, не содержащую всяких примесей, то ей теплопроводность будет достаточно высока, как и у всех металлов. Составляет она около 70 Вт/(м*гр. Цельсия).

Если обратиться к показателям у углеродистых и высоколегированных сталей, то они существенно ниже, что в принципе неудивительно. Это объясняется наличием в их составе примесей, что понижает коэффициент теплопроводности. Кстати, следует помнить о том, что сам фактор термического воздействия может существенно повлиять на теплопроводность высоколегированных и углеродистых сталей. Дело в том, что при увеличении температуры, коэффициент этой величины таких сталей понижается.

Теплопроводность нескольких различных видов сталей

Тут будут представлены сухие цифры для того, чтобы пользователь мог сразу найти нужные для себя показатели коэффициента данной величины для некоторых марок сталей:

  • Коэффициент теплопроводности низкоуглеродистых сталей, которые применяются в производстве обычных труб, равен 54, 51, 47 (Вт/(м*гр. С) для 25, 125, 225 градусов по Цельсию соответственно.
  • Средний коэффициент углеродистых сталей, который можно высчитать при комнатной температуре, находится в диапазоне от 50 до 90 Вт/(М*гр. С).
  • Коэффициент теплопроводности для обычной стали, которая не содержит различных примесей, которые, в свою очередь, не могут никак повлиять на этот коэффициент, равен 64 Вт/(м*гр. С). Этот коэффициент несущественно изменяется при изменении термического воздействия, но точно не так сильно, как в случае с углеродистыми и легированными сталями.
Читать еще:  Температура плавления канифоли сосновой

Выводы

Для успешного процесса обработки любого материала очень важно знать все его физические свойства и характеристики. Это нужно для того, чтобы успешно проделать всю требуемую работу и получить нужный результат. Незнание характеристик может привести к неприятным последствиям.

Теплопроводность стали — очень важный момент, если предполагается работа с этим металлом. Следует помнить не только основной коэффициент теплопроводности обычной стали, но и коэффициенты этой величины у её сплавов. Они обладают другими свойствами, что может сделать работу с ними более трудной.

Мастер должен быть обладать знаниями о том, что углеродистые и легированные стали обладают гораздо меньшим коэффициентом теплопроводности, так как в их составах содержатся примеси, напрямую влияющие на эту величину.

Также следует помнить, что коэффициент данной характеристики сталей очень зависит и от термического воздействия. Это означает, что чем температура выше, тем больше и коэффициент.

Теплопроводность сталей: общее понятие и некоторые значения

Для того чтобы проводить какую-либо работу с различными материалами, перед их обработкой обязательно нужно узнать все данные, касающиеся характеристик материала, его физические свойства.

Ниже будет рассмотрен такой материал, как сталь. Внимание будет заострено на такой способности материалов, как теплопроводность. Это показатель, который обязательно надо знать, если предполагается работа с любым материалом.

Понятие «теплопроводность»

Для начала следует разобраться в самом понятии «теплопроводность». Это поможет пользователю легче лавировать среди сухих цифр и оперировать ими. Для того чтобы провести определённую работу, следует основательно подойти к делу и разузнать все возможные характеристики того материала, с которым впоследствии будет работать пользователь.

Теплопроводностью называют такую способность различных материальных тел к теплообмену (переносу энергии) к менее нагретым частям тела от его более нагретых частей. Этот процесс возможен, благодаря различным частицам тела, которые хаотически движутся. Такими частицами являются:

  • молекулы;
  • атомы;
  • электроны и так далее.

Такой теплообмен возможен во всех телах, в которых наблюдается неоднородное распределение температурных показателей. Сам механизм переноса тепла будет напрямую зависеть от агрегатного состояния рассматриваемого материала.

Также термин «теплопроводность» применяется для обозначения количественной характеристики способности любого физического тела проводить тепло. Если сравнивать тепловые цепи с цепями электрическими, то такой термин является аналогом проводимости.

Для того чтобы охарактеризовать количественную способность физического тела проводить тепло, используется специальная величина, которая именуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, которое проходит через образец материала, обязательно однородного, единичной площади и единичной длины за единицу времени при единичной разнице температур. В известной всем системе СИ такая величина измеряется в Вт/(м*градус Цельсия).

Само явление теплопроводности зиждется на принципах, которые с лёгкостью объясняет молекулярно-кинетическая теория. Они заключаются в том, что нагретые молекулы двигаются намного быстрее, чем молекулы, пребывающие в своём обычном состоянии, поэтому при своём быстром хаотическом движении они способны влиять на другие молекулы, находящиеся в более холодных частях тела и передавать им своё тепло.

Теплопроводность стали

Для того чтобы оперировать полученными знаниями о теплопроводности материалов для последующей работы с ними, следует учитывать все существующие нюансы для отдельного физического тела.

Если говорить именно о стали, то следует помнить, что данная характеристика этого металла снижается, если содержит в себе примеси различного рода. Можно привести даже конкретные примеры, которые могут подтвердить этот общеизвестный факт. Например, если в стали увеличено содержание углерода, то это отрицательно сказывается на коэффициенте теплопроводности стали. У легированных сталей этот коэффициент ещё ниже из-за присадок.

Если рассматривать чистую сталь, не содержащую всяких примесей, то ей теплопроводность будет достаточно высока, как и у всех металлов. Составляет она около 70 Вт/(м*гр. Цельсия).

Если обратиться к показателям у углеродистых и высоколегированных сталей, то они существенно ниже, что в принципе неудивительно. Это объясняется наличием в их составе примесей, что понижает коэффициент теплопроводности. Кстати, следует помнить о том, что сам фактор термического воздействия может существенно повлиять на теплопроводность высоколегированных и углеродистых сталей. Дело в том, что при увеличении температуры, коэффициент этой величины таких сталей понижается.

Теплопроводность нескольких различных видов сталей

Тут будут представлены сухие цифры для того, чтобы пользователь мог сразу найти нужные для себя показатели коэффициента данной величины для некоторых марок сталей:

  • Коэффициент теплопроводности низкоуглеродистых сталей, которые применяются в производстве обычных труб, равен 54, 51, 47 (Вт/(м*гр. С) для 25, 125, 225 градусов по Цельсию соответственно.
  • Средний коэффициент углеродистых сталей, который можно высчитать при комнатной температуре, находится в диапазоне от 50 до 90 Вт/(М*гр. С).
  • Коэффициент теплопроводности для обычной стали, которая не содержит различных примесей, которые, в свою очередь, не могут никак повлиять на этот коэффициент, равен 64 Вт/(м*гр. С). Этот коэффициент несущественно изменяется при изменении термического воздействия, но точно не так сильно, как в случае с углеродистыми и легированными сталями.

Выводы

Для успешного процесса обработки любого материала очень важно знать все его физические свойства и характеристики. Это нужно для того, чтобы успешно проделать всю требуемую работу и получить нужный результат. Незнание характеристик может привести к неприятным последствиям.

Теплопроводность стали — очень важный момент, если предполагается работа с этим металлом. Следует помнить не только основной коэффициент теплопроводности обычной стали, но и коэффициенты этой величины у её сплавов. Они обладают другими свойствами, что может сделать работу с ними более трудной.

Читать еще:  При какой температуре плавится олово для пайки

Мастер должен быть обладать знаниями о том, что углеродистые и легированные стали обладают гораздо меньшим коэффициентом теплопроводности, так как в их составах содержатся примеси, напрямую влияющие на эту величину.

Также следует помнить, что коэффициент данной характеристики сталей очень зависит и от термического воздействия. Это означает, что чем температура выше, тем больше и коэффициент.

Теплопроводность стали при различных температурах

Теплопроводность – вид передачи теплоты между неподвижными частицами твердого, жидкого или газообразными вещества. Таким образом, теплопроводность – это теплообмен между частицами или элементами структуры материальной среды, находящимися в непосредственном соприкосновении друг с другом. При изучении теплопроводности вещество рассматривается как сплошная масса, его молекулярное строение игнорируется. В чистом виде теплопроводность встречается только в твердых телах, так как в жидких и газообразных средах практически невозможно обеспечить неподвижность вещества.
Большинство строительных материалов являются пористыми телами. В порах находится воздух, имеющий возможность двигаться, то есть переносить теплоту конвекцией. Считается, что конвективной составляющей теплопроводности строительных материалов можно пренебречь ввиду ее малости. Внутри поры между поверхностями ее стенок происходит лучистый теплообмен. Передача теплоты излучением в порах материалов определяется главным образом размером пор, потому что чем больше поры, тем больше разность температуры на ее стенках. При рассмотрении теплопроводности характеристики этого процесса относят к общей массе вещества: скелету и порам совместно.
Ограждающие конструкции здания, как правило, является плоско-параллельными стенками, теплоперенос в которых осуществляется в одном направлении. Кроме того, обычно при теплотехнических расчетах наружных ограждающих конструкций принимается, что теплопередача происходит при стационарных тепловых условиях, то есть при постоянстве во времени всех характеристик процесса: теплового потока, температуры в каждой точке, теплофизических характеристик строительных материалов. Поэтому важно рассмотреть процесс одномерной стационарной теплопроводности в однородном материале, который описывается уравнением Фурье:

где qT – поверхностная плотность теплового потока, проходящего через плоскость, перпендикулярную тепловому потоку, Вт/м ² ;
λ – теплопроводность материала, Вт/м. °С;
t – температура, изменяющаяся вдоль оси x, °С;
Отношение , носит название градиента температуры, °С/м, и обозначается grad t. Градиент температуры направлен в сторону возрастания температуры, которое связано с поглощением теплоты и уменьшением теплового потока. Знак минус, стоящий в правой части уравнения (2.1), показывает, что увеличение теплового потока не совпадает с увеличением температуры.
Теплопроводность λ является одной из основных тепловых характеристик материала. Как следует из уравнения (2.1) теплопроводность материала – это мера проводимости теплоты материалом, численно равная тепловому потоку, проходящему сквозь 1 м ² площади, перпендикулярной направлению потока, при градиенте температуры вдоль потока, равном 1 °С/м (рис.1). Чем больше значение λ, тем интенсивнее в таком материале процесс теплопроводности, больше тепловой поток. Поэтому теплоизоляционными материалами принято считать материалы с теплопроводностью менее 0,3 Вт/м. °С.

С уменьшением плотности материала его теплопроводность λ уменьшается, так как снижается влияние кондуктивной составляющей теплопроводности скелета материала, но, однако при этом возрастает влияние радиационной составляющей. Поэтому, уменьшение плотности ниже некоторого значения приводит к росту теплопроводности. То есть существует некоторое значение плотности, при котором теплопроводность имеет минимальное значение. Существуют оценки того, что при 20 ° С в порах диаметром 1мм теплопроводность излучением составляет 0,0007 Вт/ (м ° С), диаметром 2 мм – 0,0014 Вт/ (м °С) и т.д. Таким образом, теплопроводность излучением становится значимой у теплоизоляционных материалов с малой плотностью и значительными размерами пор.
Теплопроводность материала увеличивается с повышением температуры, при которой происходит передача теплоты. Увеличение теплопроводности материалов объясняется возрастанием кинетической энергии молекул скелета вещества. Увеличивается также и теплопроводность воздуха в порах материала, и интенсивность передачи в них теплоты излучением. В строительной практике зависимость теплопроводности от температуры большого значения не имеет для пересчета значений теплопроводности материалов, полученных при температуре до 100оС, на значения их при 0оС служит эмпирическая формула О.Е. Власова [3]:


, (2.2)

где λо – теплопроводность материала при 0 ° С;
λt – теплопроводность материала при t ° С;
β – температурный коэффициент изменения теплопроводности, 1/ ° С, для различных материалов, равный около 0,0025 1/ ° С;
t – температура материала, при которой его коэффициент теплопроводности равен λt.
Для плоской однородной стенки толщиной δ (рис.2) тепловой поток, передаваемый теплопроводностью через однородную стенку, может быть выражен уравнением:

где τ1,τ2 – значения температуры на поверхностях стенки, ° С.
Из выражения (2.3) следует, что распределение температуры по толщине стенки линейное. Величина δ/λ названа термическим сопротивлением материального слоя и обозначена R T , м ² . ° С/Вт:


Рис.2. Распределение температуры в плоской однородной стенке.

Следовательно, тепловой поток qТ, Вт/м ² , через однородную плоскопараллельную стенку толщиной δ, м, из материала с теплопроводностью λ, Вт/м. ° С, можно записать в виде

Термическое сопротивление слоя – это сопротивление теплопроводности, равное разности температуры на противоположных поверхностях слоя при прохождении через него теплового потока с поверхностной плотностью 1 Вт/м².
Теплообмен теплопроводностью имеет место в материальных слоях ограждающих конструкций здания.

Ссылка на основную публикацию
Adblock
detector