Температура резака пропан кислород

Что такое пропан, сфера применения, отличие пропана от метана

Что нужно знать о техническом пропане?

Пропан технический представляет собой органическое вещество, относящееся к классу алканов. Он может быть природным и техническим, который образуется во время крекинга нефтепродуктов. Пропан известен как один из самых ядовитых газов.

Пропан технический: свойства

Среди основных параметров вещества стоит отметить следующие:

  • сумма пропилена и пропана составляет не менее 75 % от всего объема (количество последнего не нормируется);
  • сумма бутанов и непредельных углеводородов – не нормируется;
  • количество жидкого остатка не должна превышать 0,7 % об.;
  • давление насыщенных паров при температуре – 20 ◦С должно быть не менее 0,16 МПа;
  • количество сероводорода и меркаптановой серы не должна превышать 0,013 % от всего объема;
  • интенсивность запаха пропана должна превышать 3 балла.

Минимальная температур горения пропана составляет – 35 °C. Благодаря этому работать с газом можно в любых условиях. Самовоспламеняется пропан, при нормальном атмосферном давлении, при температуре в 466 °C. При 97 °C возникает критическая температура пропана. Температура горения пропан-бутана колеблется от 800 до 1970 °С, пламя сгорания чистого пропана имеет температуру около 2526 °C, а жаропроизводительность, в среднем, составляет 2110 °C. В газовых резаках, при смеси с кислородом от 1:4 до 1:5 (пропан:кислород), возникает температура пламени до 2830 °C.

Использование технического пропана

Технический пропан может быть использован в следующих сферах:

  • в качестве топлива для грузовиков, при выполнении работ разного характера в промышленности;
  • в строительстве: для резки металлолома, сварки, во время кровельных работ, для разогрева асфальта, для обогрева помещений;
  • в быту для приготовления пищи, отопления дома, подогрева воды;
  • в пищевой и химической промышленности для растворителей или в качестве пищевой добавки, известной как Е944.

Отличие пропана от метана

Среди отличительных особенностей пропана стоит отметить:

  • более высокая эффективность при сгорании, благодаря чему он намного эффективнее метана во время проведения сварочных работ;
  • высокая инертность газа, что позволяет ему более активно вступать в разнообразные химические реакции;
  • пропан безопаснее метана и отличается наличием наркотического действия;
  • при транспортировке пропана не нужно использовать какое-то специальное оборудование, достаточно обычных стальных баллонов.

Кроме этого, пропан является более дешевым и легче заправляется.

Особенности хранения

Для хранения и перевозки пропана используют металлические баллоны, которые окрашены в ярко0красный цвет. Их нельзя размещать в условиях слишком низких или слишком высоких температур, так как возможно изменения агрегатного стана вещества и появляется риск взрыва.

Как видим, пропан – это невероятны полезное вещество, применяемое в самых разных сферах, при работе с которых нужно знать массу нюансов и правила безопасной эксплуатации.

Технология газовой резки металла

На сегодняшний день газовая резка является наиболее популярным методом, благодаря отсутствию строгих требований к месту проведения работы и простоте выполнения операций. В этой статье вы узнаете об особенностях технологии, достоинствах и недостатках этого способа, принципе работы оборудования и его видах.

Газовая резка металла — технология, которая на сегодняшний день используется широко, поскольку предполагает простоту выполнения операции, не требует дополнительных источников энергии и сложного оборудования. Именно эти методом пользуются специалисты в ремонтных, строительных и сельскохозяйственных работах. Практически все устройства, предназначенные для резки металла газом, мобильны, их легко транспортировать и использовать в другом месте.

Технология резки металла газом

Сущность процесса кислородной резки заключается в следующем. Нагреватель разогревает металл в среднем до температуры в 1100 градусов С. Затем в рабочую зону подается струя кислорода. Поток, соприкасаясь с нагретым металлом, воспламеняется. Горящая струя легко разрезает металлический лист, при условии постоянной и стабильной подачи газа.

У металла температура горения должна быть меньше, нежели температура плавления. В противном случае расплавленные, но не сгоревшие массы сложно удалить из рабочей зоны.

Таким образом, операция резки выполняется за счет сгорания материала в струе газа. Основным модулем инструмента газовой резки является резак. Он обеспечивает точную дозировку смешивание газов или паров жидкого топлива с кислородными массами в газовоздушную смесь. Также резак обеспечивает воспламенение получаемой смеси, и отдельную подачу кислорода к рабочему месту.

Читать еще:  При какой температуре плавится олово для пайки

Резка газом относится к термическим способам обработки металла. Ее преимущества в том, что можно работать с материалом любой толщины, причем с высокой производительностью. Объемы ежедневной выработки сварщика может измеряться тоннами. Специалисты отмечают достоинства данной технологии в том, что газоплазменная резка полностью автономна и не зависит от наличия/отсутствия источников питания. Поскольку сварщик нередко должен вести работы в полевых условиях или у него нет возможности подключиться к источнику питания на конкретном объекте.

Ручная газокислородная резка металла доступна для работы с широким спектром материалов, за исключением латуни, нержавеющей стали, меди и алюминия.

Виды резки металла газом

Газорезка различных металлов классифицируется на несколько методов, в зависимости от используемых газов и некоторых других особенностей. Каждый из способов оптимален для выполнения тех или иных задач. Например, если есть возможность подключения к сети, то можно воспользоваться кислородно электрической дуговой резкой, или при работе с низкоуглеродистыми сталями лучше использовать газовоздушную смесь с пропаном. Наиболее востребованы на практике следующие методы:

  • Резка пропаном. Резка металла пропаном и кислородом один из наиболее популярных способов работы, но она имеет некоторые ограничения. Операция выполнима для титановых сплавов, низкоуглеродистых и низколегированных сталей. Если содержание углерода или легирующего компонента в материале превышает 1%, необходимо искать другие способы кислородной эффективной резки металла. Этот метод предусматривает использование и других газов: метан, ацетилен, пропан и некоторые другие.
  • Воздушно-дуговая резка. Кислородно электрическая дуговая резка является весьма эффективным методом. Металл расплавляется с помощью электрической дуги, а удаление остатков выполняет воздушная струя. Кислородно электрическая дуговая резка предполагает подачу газа непосредственно вдоль электрода. Недостатком данного способа являются неглубокие резы. Зато их ширина при выполнении работы кислородно электрической дуговой сварки может быть любая.
  • Кислородно-флюсовая резка. Особенностью кислородно флюсовой металлической резки является подача в рабочую зону дополнительного компонента. Это флюс, имеющий порошкообразную форму. Этот компонент обеспечивает большую податливость материала во время проведения кислородно флюсовой металлической резки. Метод используется для разрезания материалов, образующих твердоплавкие окислы. Использование метода кислородно флюсовой металлической резки позволяет создать дополнительный тепловой эффект. Так режущая струя выполняет операцию эффективно. Кислородно флюсовая металлическая резка применима для чугуна, легированных сталей, алюминия, меди и медных сплавов, зашлакованных металлов и железобетона.
  • Копьевая резка. Кислородно копьевая металлическая резка используется для разделки габаритных массивов стали, технологических производственных отходов и аварийных скрапов. Ее особенность в том, что скорость выполнения операции значительно увеличивается. Технология кислородной резки в этом случае заключается в использовании высокоэнергетичной струи, что снижает расход стальных копьев. Высокая скорость обеспечивается за счет полного и более быстрого сгорания металла.

Расход газа при резке металла

Расход газа к объемам резки зависит в первую очередь от выбранного метода проведения операции. Например, воздушно дуговая эффективная резка металла предполагает большее использование газа, нежели кислородно флюсовая металлическая резка. Также расход зависит от таких параметров:

  • опытность сварщика, новичок затратит больший объем на метр, нежели мастер;
  • целостность и технологические параметры используемого оборудования;
  • марка металла, с которым предстоит работа, и его толщина;
  • ширина и глубина выполняемого реза.

Ниже представлена таблица, если для резки металла используется пропан:

Преимущества и недостатки технологии

Резка металла кислородом характеризуется следующими преимуществами:

  • возможность разрезания листов и изделий значительной толщины;
  • рез можно выполнять любой степени сложности;
  • возможность поверхностной обработки материала;
  • оптимальное соотношение стоимость работы и ее качества;
  • достаточно быстрый способ и универсальный.

Среди недостатков следует отметить:

если у специалиста небольшой опыт работы, ему не следует браться за точные операции, поскольку для выполнения необходимы навыки и знания;

  • метод не безопасен, поскольку возможен взрыв газовоздушной смеси;
  • термическому воздействию подвергается значительный участок;
  • низкая точность резания.

Деформация материала при резке газом

Поскольку резка металла газом предполагает термическое воздействие на материал, деформация является естественным последствием операции. Неравномерный нагрев и охлаждение могут измерить форму заготовки. Но существуют несколько способов устранения этого дефекта:

  • использование отпуска или обжига;
  • правка листовой стали на вальцах, после этого материал становится более стабильным;
  • чтобы избежать коробления, можно закрепить изделие перед операцией;
  • выполнять операцию на максимально допустимой скорости и другие.
Читать еще:  Температура плавления жести из банок

Обратный удар при резке газом

При работе с газовым резаком существует возможность обратного удара. В этом случае газовый поток начинает гореть в обратном направлении, причем скорость процесса выше, нежели скорость истечения газа. Это эффект способен вывести из строя оборудование, взрыв баллонов или редуктора. Также существуют риски нанесения значительного ущерба здоровью сварщика и других людей, находящихся поблизости. Эффективным решением данных опасностей будет установка клапана.

Еще некоторые особенности резания металла газом вы можете посмотреть на видео:

Если у вас есть информация по данной теме, интересные факты или советы по использованию этой технологии, предлагаем вам поделиться ими в блоке комментариев.

Резка металла газом

  • СОДЕРЖАНИЕ:
  • • Основные методы резки металла газом
  • • Как рассчитать стоимость услуги за метр
  • • Расход газа при резке металла
  • • Особенности резки в размер
  • • Преимущества метода газовой резки
  • • Возможность деформации
  • • Процесс раскроя металла
  • • Устройство ручного газового резака
  • • Устройство инжекторного резака
  • • От чего зависит расход газа

Газовая резка металла (кислородная/автогенная) – процесс разрезания стальных и металлических изделии/заготовок кислородным потоком, который подается из специального аппарата. Суть процедуры раскроя заключается в горении металла, с помощью газовой смеси и кислорода, подаваемых на обрабатываемый элемент. Предварительно изделие нагревается до 1300 градусов открытым пламенем, затем подается кислородная струя, разрезающая металл в соответствии со схемой. Современная технология газовой резки позволяет производить раскрой листа любой конфигурации толщиной до 300 мм, в отдельных случаях до 1000 мм.

Основные методы резки металла газом

Копьевая резка – с помощью данной операции производится обработка нержавейки, чугуна и низкоуглеродистой стали больших диаметров. Суть резки заключается в том, что копье разогревается до температуры плавления и прижимается к разрезаемой заготовке. Метод распространен в области машиностроения и металлургии.

Кислородно-флюсовая резка используется для работы с высоколегированными хромистыми и хромоникелевыми сплавами. Данный способ характеризуется тем, что в струю газа (кислорода) начинает вводится порошкообразный флюс, он служит дополнительным источником тепла.

Воздушно-дуговая резка основана на расплавлении металла посредством электрической дуги. При использовании данного метода газ подается вдоль всего электрода.

Резка пропаном выполняется при необходимости раскроя титана, низколегированных и низкоуглеродистых стальных сплавов. Оборудование данного типа не может раскроить металл толще 300 мм.

Толщина материала, см Пробивание, сек. Ширина реза, см Расход пропана, м 3 Расход кислорода, м 3
0,4 От 5 до 8 0,25 0,035 0,289
1,0 От 8 до 13 0,3 0,041 0,415
2,0 От 13 до 18 0,4 0,051 0,623
4,0 От 22 до 28 0,45 0,071 1,037
6,0 От 25 до 30 0,5 0,071 1,461

Как рассчитать стоимость услуги за метр

При расчете стоимости в рассмотрение принимается: толщина металла, максимальный размер детали, ширина реза, кромка, особенности конфигурации, исходный материал – черный или цветной металл, а также предусмотрена резка под углом. Как правило, формула для расчета принимает во внимание прямой рез, если же она осуществляется по окружности/сектору, тогда используется повышающий коэффициент 2.0. Стоимость одного отверстия = 0,25 стоимости реза 1 п.м. металла.

Расход газа при резке металла

Рабочий диапазон, мм Резательное сопло NX Кислород (давление, bar) Горючий газ (давление, bar) Кислород (потребление, m3/h) Горючий газ (потребление, m3/h)
3-5 000 NX 1,0-2,0 0,5 1,5-2,0 0,20
5-10 00 NX 1,5-2,0 0,5 2,0-3,0 0,30
10-15 0 NX 2,0-3,0 0,5 3,0-3,5 0,35
15-25 1 NX 2,5-3,5 0,5 3,5-4,5 0,40
25-50 2 NX 3,5-4,0 0,5 4,0-4,8 0,40
50-75 3 NX 3,0-4,5 0,5 5,0-6,5 0,40
75-150 4 NX 3,5-5,5 0,5 6,5-9,5 0,50
150-200 5 NX 4,5-5,5 0,5 10,0-14,0 0,60
200-300 6 NX 5,5-6,5 0,5 15,0-19,0 0,70

Особенности резки в размер

Газовая резка позволяет проводить фигурный раскрой листа. Используя газовый резак, можно получить ровный вертикальный край без рваных швов. Также повысить качество можно применяя трафаретную резку. Среди достоинств метода – мобильность оборудования, благодаря чему можно совершать одинаковые операции по шаблонным задачам.

Читать еще:  Температура плавки чугуна

Преимущества метода газовой резки

  • ● быстрота и универсальность
  • ● оптимальная стоимость и высокое качество
  • ● любой уровень сложности
  • ● любая конфигурация реза
  • ● возможность работы с металлом разной толщины

Возможность деформации

Деформация – обычное явление, если на металл оказывается термическое воздействие. Исправить дефекты можно с помощью вальцовки, обжига, предварительного закрепления изделия, также не стоит превышать допустимую скорость обработки.

Процесс раскроя металла

● Резка начинается с точки, от которой должен идти разрез.
● Эта точка разогревается до температуры 1000-1300 С. После воспламенения материала пускается узконаправленная струя кислорода.
● Резак плвно ведется по линии (угол – 84-85 градусов), сторона – противоположная от резки.
● Когда линия раскроя достигнет 20 мм, угол наклона меняется на 20-30 градусов.

Наивысшая температура пламени горелки. Регулировка пламени горелки.

Наивысшая температура пламени горелки. Регулировка пламени горелки.

Длина подогревательного пламени зависит от его мощности, т. е. от количества горючего газа, подводимого к пламени, а также от рода горючего газа.

Наивысшая температура пламени горелки.

Температура пламени является одним из важнейших его свойств, от которого зависит скорость резки.

Температура пламени зависит от рода горючего и состава смеси, подаваемой в резак. Она различна для разных зон пламени.

Наиболее высокую температуру пламени дает ацетилен, обеспечивающий быстрый нагрев металла до температуры начала горения. Поэтому ацетилен является наиболее распространенным горючим газом, применяемым при кислородной резке.

Наибольшую температуру (около 3100°С) имеет ацетилено-кислородное пламя на расстоянии 3—4 мм от конца ядра по оси пламени. По мере удаления от ядра температура понижается.

Распределение температуры в нормальном ацетилено-кислородном подогревательном пламени по его длине показано на рис. 1.

Слишком высокая температура, развиваемая ацетилено-кислородным пламенем, часто приводит к оплавлению кромок разрезаемых деталей. Поэтому ацетилен, несмотря на все его преимущества, дает при резке менее чистый рез, чем водород, пары бензина и керосина и другие горючие газы.

Регулировка пламени горелки.

От правильной регулировки подогревательного пламени в значительной мере зависит качество резки. Кислородная резка ведется при нормальном или слегка окислительном пламени.

У резаков с концентрическим расположением мундштуков правильно отрегулированное пламя окружает режущую струю кислорода, при этом внутреннее ядро должно быть симметричным и везде одинаковым по яркости.

Если мундштуки резака сдвинуты, сечение кольцевого канала, из которого вытекает горючая смесь, нарушается и пламя получается односторонним. Таким пламенем резку производить нельзя, так как одна кромка разреза будет сильнее нагреваться, оплавляться и рез получится нечистым. Применение разработанных одним из институтов разъемных самоцентрирующихся мундштуков обеспечивает (вследствие самоцентрирования) симметричную форму пламени.

Очень часто происходит засорение канала, по которому проходит горючая смесь, в результате чего пламя разбивается на отдельные струйки и становится неравномерным. Таким пламенем резать нельзя, так как помимо получения некачественного реза заметно снижается производительность.

Регулировка пламени заключается в том, чтобы создать симметричное по отношению к режущей струе кислорода нормальное или слегка окислительное пламя необходимой мощности. Мощность пламени устанавливается в зависимости от толщины разрезаемого металла.

Обычно при правильно установленном давлении и полностью открытых кислородном и ацетиленовом вентилях (на резаке) в зажженном подогревательном пламени есть некоторый избыток ацетилена. Постепенным перекрыванием ацетиленового вентиля достигается нормальное пламя.

Нормальное пламя должно быть создано при не полностью открытых вентилях для возможности дальнейшей регулировки.

Регулировку на слегка окислительное пламя начинают с установления нормального пламени, а затем прибавляют кислород или убавляют ацетилен до тех нор, пока пламя не приобретет требуемой величины.

В правильно отрегулированном пламени (если регулировка производилась при закрытой режущей струе кислорода) после пуска струи давление кислорода подогревательного пламени несколько понижается и пламя становится ацетиленистым. Поэтому окончательную регулировку подогревательного пламени следует вести при открытом вентиле режущего кислорода, а после регулировки вентиль следует закрыть.

Если режущий кислород подается в резак по отдельному от подогревательного кислорода шлангу, дополнительная регулировка пламени не требуется.

Статья оказалась полезной?! Поделись с друзьями в социальных сетях.

Ссылка на основную публикацию
Adblock
detector