Температура плавления вольфрама
Вольфрам
Вольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод. При стандартных условиях химически стоек. Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»). Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).
СТРУКТУРА
В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.
СВОЙСТВА
Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с. Является парамагнетиком.
Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.
ЗАПАСЫ И ДОБЫЧА
Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.
Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.
ПРОИСХОЖДЕНИЕ
Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.
Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.
ПРИМЕНЕНИЕ
Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).
Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей. Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.
Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. ( Р18, Р6М5. от rapid — быстрый, скорость).
Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.
Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185 W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184 W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).
Свойства вольфрама
Вольфрам (W) – удивительный металл с прекрасными физическими и химическими характеристиками. Его активно применяют практически во всех отраслях промышленности.
Физические свойства вольфрама:
- твердый тугоплавкий и тяжелый металл (вес вольфрама почти в 2 раза больше, чем у свинца);
- масса вольфрама составляет 184 г/моль;
- сплавы W отличаются прочностью, твердостью и высоким сопротивлением к высоким температурам;
- цвет зависит от способа получения (порошок имеет серый, темно-серый или черный цвет, сплавленный W – серый оттенок, напоминающий цвет платины);
- плотность вольфрама при нормальних условиях равна 19, 25 г/м3.
Температура плавления вольфрама составляет 3410 °C – соизмерима с температурой на поверхности Солнца – 6690 °C. Высокая твердость вольфрама позволяет применять его в химической промышленности и металлургии. При этом сопротивление вольфрама зависит только от температуры.
Химические свойства вольфрама:
- в природе состоит из стабильных изотопов (5 штук), массовые числа которых находятся в пределах 180-186;
- отделение 74 электронов атома W происходит легко;
- обладает 6 валентностью, в соединениях может иметь 0, 2, 3, 4 и 5-валентным;
- орбита элемента включает 2 яруса, что позволяет образовать крепкую химическую связь.
Наука относит вольфрам к химически активным элементам. Он может вступать в различные реакции и образовывать как простые, так и сложные соединения. В сплавах W чаще всего остается химически связанным. При этом с окислителями (например, с кислородом) он реагирует быстрее, чем другие металлы рода «тяжеловесов».
В случае нагревания элемента он еще быстрее вступает в реакцию с кислородом. Если в реакции участвуют водные пары, реакция протекает гораздо быстрее. Ученые выяснили: при нагреве элемента до 500 °C получается WO2 – низкий окислитель с высокой устойчивочтью. Он затягивает поверхность металла коричневой пленкой. Если повышать температуру – можно получить еще один окислитель, который называют промежуточным (W4O11). Он имеет синюю окраску, а если продолжить нагрев до температуры в 923°C, она изменится на лимонно-желтую. Этому будет способствовать WO3.
Если с вольфрамом смешивают сухой фтор, то даже при небольшом подогреве можно получить вещество WF6. Его именуют гексафторидом. Оно может плавиться даже при 2,5 градусах, а кипеть при 19,5. Такое же соединение можно получить и при использовании хлора. Однако для этой реакции потребуется высокая температура – около 600 °C.
Также вольфрам легко вступает в реакции с йодом и бромом. С ними он образовывает такие малоустойчивые соединения как дибромид, ментамид, а также дииодид и тетрадид. При высоких температурах вольфрам соединяется с селеном, азотом, серой, а также с кремнием и углеродом.
Одним из интересных соединений считают карбонил. В этой реакции вольфрам реагирует на окись углерода. Именно здесь и проявляется его нулевая валентность. Однако это вещество сложно назвать устойчивым. Поэтому его можно получить только при создании специальных условий. Из карбонила получают плотные и ультратонкие покрытия чистого вольфрама.
Нужно уделить внимание и вольфрамовым соединениям. Некоторые из них поддаются полимеризации, в частности окись вольфрама.
Теплоёмкость и другие характеристики вольфрама, и где он используется
Вольфрам относится к переходным металлам — группе элементов, которые находятся в середине периодической таблицы. Высокая температура плавления — одно из необычных свойств вольфрама, она составляет 3410 °C. Это наибольшая точка плавления среди всех металлов. Ещё одно важное свойство — прочность на очень высоких температурах. Эти свойства определяют основное основную сферу, где используют вольфрам — изготовление сплавов.
Физические характеристики и химические свойства
Вольфрам — прочное твёрдое вещество, цвет которого колеблется от стального серого до почти белого. Его температура плавления самая высокая среди всех металлов — 3410 °C. Его плотность составляет около 19.3 грамма на кубический сантиметр. Этот материал очень хорошо проводит ток. Теплоёмкость вольфрама 134,4 Дж/(кг·град) и возрастает с увеличением температуры. Электропроводность у него не столь велика и уступает электропроводности меди почти в 3 раза.
Это относительно неактивный металл. Не реагирует с кислородом при комнатной температуре. Он ржавеет при температурах свыше 400 °C. Слабо реагирует с кислотами, хотя растворяется в азотной кислоте.
Обозначение в таблице Менделеева: W;
- Атомный номер: 74;
- Тип элемента: Переходный металл;
- Плотность: 19,3 г/см 3 ;
- Температура плавления: 3410 градуса по Цельсию;
- Температура кипения: 5555 градусов по Цельсию;
- Твёрдость: 488 кг/мм 2 ;
- Удельная теплота плавления: 184 кДж/кг;
- Сопротивление в нормальных условиях: 55·10^(−9) Ом·м;
- Теплопроводность (300 K): 162,8 Вт/(м·К).
Нахождение в природе и способы добывания
В природе не встречается в чистом виде. Наиболее распространённые руды, в которых он находится, шеелит и вольфрамит. Это один из наиболее редких элементов. В чистом виде может быть получен путём нагрева окиси вольфрама с алюминием. Он также получается в результате прохождения газообразного водорода через нагретую до высоких температур вольфрамовую кислоту.
Область применения
Существует много отраслей производства, где применяется вольфрам. Основная сфера применения — производство сплавов. Этот металл повышает твёрдость, прочность, упругость и улучшает способность растягиваться у различных видов стали.
Обычно его готовят в двух формах: ферровольфрам — сплав железа и вольфрама, он обычно содержит около 70−80% вольфрама. Ферровольфрам смешивается с другими металлами и сплавами (обычно со сталью) для производства специализированных соединений. И также он производится в порошкообразной форме. В дальнейшем его добавляют к другим металлам с целью получения новых соединений с улучшенными характеристиками .
Около 90% всех вольфрамовых сплавов используются в горнодобывающей промышленности, строительстве, а также электротехническом и металлообрабатывающем оборудовании. Эти сплавы используются для изготовления многих вещей: нагревательные элементы в печах (благодаря хорошей теплопроводности), деталей для самолётов и космических аппаратов; оборудования, используемого в телевизионной, радиолокационной и радиотехнике; высокопрочных свёрл; металлорежущих инструментов и аналогичного оборудования.
Небольшое количество вольфрама используется в лампах накаливания. Очень тонкий провод, который образует нить в лампах, сделан именно из него. Электрический ток проходит через эту нить и нагревает её, что заставляет её испускать свет. Он не плавится благодаря тому, что температура плавления вольфрама высока.
Также он используется, в таких приборах и элементах, как:
электроды для сварки;
- противовесы;
- магниты;
- рентгеновские аппараты;
- обмотки и нагревательные элементы электроплит;
- катоды радиоламп и электронных приборов (торированный вольфрам);
- магнетроны в микроволновых печах;
- химические катализаторы.
Кроме того, он применяется при металлообработке и добыче полезных ископаемых, а также для производства пигментов для красок.
Характеристика сплавов
Самое важное соединение — карбид вольфрама. У него очень высокая температура плавления — 2780 °C. Он используется для того, чтобы делать части электрических цепей, режущих инструментов, металлокерамики и «цементированного» карбида.
Металлокерамика — это материал из керамики и металла. Керамика — глинистый материал. Металлокерамику используют там, где очень высокие температуры воздействуют в течение длительного времени. Например, части ракетного или реактивного двигателя делаются именно из неё.
«Цементированный» карбид изготавливается путём соединения карбида вольфрама к другому металлу. Продукт очень прочен и остаётся прочным в условиях высоких температур. Именно «цементированные» карбиды используются для бурения тоннелей. Инструменты, сделанные из такого материала, могут работать на скоростях в 100 раз больше, чем аналогичные инструменты, сделанные из стали (к примеру, свёрла их такого материала могут выдержать большую температуру, чем свёрла из стали, а, следовательно, и интенсивность их использования может быть выше).
Интересные факты
Вольфрам — самый тяжёлый материал в инженерии, у него самая высокая точка плавления, самый высокий модуль упругости и самое низкое давление пара. Кроме того, он не окисляется на воздухе и сохраняет прочность при высоких температурах и растяжении. Это один из самых популярных цветных металлов, который не оказывается сильного воздействия на растения, людей или животных. В умеренных количествах он не опасен для здоровья.
Применение высокой температуры плавления вольфрама
Вольфрам занимает первое место среди тугоплавких металлов. Температура плавления вольфрама достигает 3387ºС. Это дает возможность применять материал в тех случаях, когда условия работы включают повышенную температуру. Благодаря этому свойству вольфрам не начнет переходить в жидкое состояние тогда, когда другие металлы уже расплавятся.
Применение тугоплавкости вольфрама
Это качество металла широко используется для производства:
- нитей накаливания в приборах освещения;
- электродов в аргонно-дуговых сварках;
- элементов нагрева для высокотемпературных вакуумных печей сопротивления;
- электронно-лучевых трубок в мониторах, осциллографах, на радиолокационных станциях;
- электронных ламп.
Вакуумные лампы в большинстве отраслей заменены на полупроводники, кроме производства высоковольтного, мощного, высокочастотного оборудования, а также космической техники. Наряду с преимуществами, тугоплавкий металл имеет и недостатки:
- сложность механической обработки;
- при температуре воздуха, превышающей 400°С, образуются оксидные пленки, а при наличии в среде серосодержащих веществ — сульфидные пленки;
- требуются большие контактные давления для создания даже низкого сопротивления на участке электрического контакта.
Для нейтрализации описанных недостатков материал сплавляют с другими металлами, которые улучшают его свойство. Существует несколько таких соединений:
- Стеллит. В его состав, кроме вольфрама, входят кобальт и хром. Напылением или наплавлением он наносится на запчасти машин, инструментов, станков для увеличения износостойкости. Стеллит применяют для производства режущих инструментов.
- Быстрорежущие и инструментальные стали, из которых изготавливают сверла, фрезы, штампы. Кроме основных составляющих, указанные соединения могут содержать хром, марганец и кремний.
- Контактные сплавы. Легирующими металлами в них служат медь и серебро. Высокая электропроводимость этих материалов увеличивает данный показатель соединений, в которые они входят. Контактные сплавы вольфрама — материал, из которого производят выключатели, рубильники, электроды.
- Твердые сплавы. Их основой служит карбид вольфрама — соединение тугоплавкого металла с углеродом. Благодаря этим двум компонентам сплав отличается высокими твердостью и температурой плавления, износостойкостью. Перечисленные характеристики имеют значение для рабочих частей инструментов, используемых в бурении и резке. Массовая доля карбида вольфрама в твердом сплаве составляет 85–95%, оставшиеся проценты показывают содержание кобальта.
Карбиды вольфрама
Твердые сплавы рассмотрим более подробно. Тугоплавкий металл может образовывать разные карбиды: полукарбид и монокарбид. Они отличаются способностью растворять в себе тугоплавкие металлы и взаимодействием с разными кислотами.
Также монокарбид уступает поликарбиду в устойчивости и твердости. А к преимуществам монокарбида можно отнести способность к образованию кристаллов в расплавленном вольфраме, что дает возможность использовать его в минералокерамических изделиях. Полукарбид обладает большей устойчивостью к температурам, легкостью внедрения в твердые растворы монокарбида с другими металлами (феррумом, кобальтом), повышенной износоустойчивостью.
Свойства соединений
Сплавы на основе карбида вольфрама обладают следующими преимуществами:
- устойчивость к окислению;
- пластичность, проявляемая под нагрузкой;
- не вступает в реакцию со многими кислотами;
- химически малоактивный, поэтому относится к низкотоксичным веществам;
- отполированный сплав невозможно поцарапать;
- не бледнеет со временем;
- тугоплавкость;
- повышенная твердость, которая не снижается при высоких температурах.
Последние два свойства обусловлены сильными связями между атомами в кристаллах, из которых состоит соединение.
Технологии изготовления
Есть несколько способов получения твердых сплавов: восстановление оксида вольфрама углеродом с дальнейшей карбидизацией; электролиз расплавленных солей; осаждение из газовой фазы; восстановление соединений тугоплавкого металла с дальнейшей карбидизацией; выращивание из расплава монокристаллов карбида вольфрама; насыщение тугоплавкого металла углеродом. Наибольшее распространение получила последняя технология. Твердые сплавы бывают двух видов:
- Литые. Их получают с помощью отливки. Для этого применяют вольфрам (в виде порошка); соединения карбида или его смеси с тугоплавким металлом, содержащие низкий процент углерода. Образованный сплав отличается высокой твердостью и износостойкостью. Но для литых соединений характерна хрупкость, поэтому их не везде можно использовать. Основные сферы применения — производство инструментов для бурения и для волочильных станков, на которых производят проволоку.
- Спеченные. Они состоят из карбида вольфрама и соединяющего металла, который выполняет связывающую функцию. В роли последнего часто используют кобальтовый, никелевый, молибденовый материалы.
Сплавы на основе карбида вольфрама
Помимо значительной твердости, для указанных соединений характерна хрупкость и плохая обрабатываемость. В связи с этим чистый карбид вольфрама применяется редко в основном он входит в состав твердых сплавов, в которых еще содержатся кобальт, титан, тантал, но массовая доля карбида при этом остается наибольшей — 70–98%. Технические характеристики твердого сплава, содержащего 98% карбида вольфрама:
- предел прочности на изгиб — минимум 1 ГПа;
- модуль Юнга составляет 969 ГПа;
- предел прочности на сжатие — минимум 9,5 ГПа;
- плотность достигает 15000–15500 кг/м³;
- твердость по шкале Роквелла — минимум 90;
- стойкость к эрозии составляет 0,3–0,8 мкмоль.
Применение сплавов
Использование описанных соединений дает возможность изготовить детали, запчасти, инструменты с нужными техническими характеристиками. В зависимости от последних разнятся и сферы применения.
- Для деталей, подвергающихся во время работы большим нагрузкам со стороны сил трения. К ним относятся режущий, буровой и штамповый инструменты. Сплав наносится на поверхность детали. Таким образом, достигаются необходимые уровни прочности и пластичности за счет сглаживания перепадов механических параметров. Например, если материал инструмента мягкий, то уменьшаются механические напряжения в инструменте, а если хрупкий, то появляется защита от поверхностной кромки. Причиной последней служит истирающее воздействие откалывающихся частиц. Полученные с помощью сплава характеристики сохраняются и при высокой температуре. Это объясняется тугоплавкостью вольфрама и углерода.
- В качестве антикоррозийного покрытия. В этой технологии твердые сплавы вытесняют хром. Данное обстоятельство обусловлено легкостью нанесения твердых сплавов, возможностью применять их в тяжелых условиях, лучшей защитой от ударной нагрузки и износа по сравнению с хромированием.
- В ювелирных изделиях. Применению в этой отрасли сплав на основе карбида вольфрама обязан следующими своими свойствами: не тускнеет с течением времени; не ржавеет; после полировки на поверхности материала не появятся царапины, вмятины.
Именно благодаря синтезу свойств тугоплавкого вольфрама и твердого углерода появилась возможность создать широко востребованный сплав с новыми техническими характеристиками.