Температура горения ацетилена с кислородом
Ацетилен
Общие сведения
Ацетилен — ненасыщенный углеводород C 2 H 2 . Имеет тройную связь между атомами углерода, принадлежит к классу алкинов. В природе на Земле практически не встречается, т.к. из-за присутствия кислорода это крайне неустойчивое соединение, получается путем синтеза. Ацетилен обнаружен в атмосфере Урана, Юпитера и Сатурна.
Впервые газообразный ацетилен получил в 1836 г. Эдмунд Дэви при разложении водой карбида калия, полученного при сплавлении металлического калия с углем: К 2 С 2 + 2Н 2 О = С 2 Н 2 + 2КОН.
С конца 19 в., когда был разработан дешевый способ получения ацетилена из карбида кальция (CaC 2 + 2H 2 O = C 2 H 2 + Ca(OH) 2 , который в свою очередь получали прокаливанием смеси угля и негашеной извести (СаО + 3С = СаС 2 + СО), этот газ стали использовать для освещения. В пламени при высокой температуре ацетилен, содержащий 92,3% углерода (это своеобразный химический рекорд), разлагается с образованием твердых частичек углерода, которые могут иметь в своем составе от нескольких до миллионов атомов углерода. Сильно накаливаясь во внутреннем конусе пламени, эти частички обуславливают яркое свечение пламени — от желтого до белого, в зависимости от температуры (чем горячее пламя, тем ближе его цвет к белому). Ацетиленовые горелки давали в 15 раз больше света, чем обычные газовые фонари, которыми освещали улицы. Постепенно они были вытеснены электрическим освещением, но еще долго использовались в небольших фонарях на велосипедах, мотоциклах, в конных экипажах.
Физические свойства
При нормальных условиях — бесцветный газ, запах которого напоминает запах чеснока, малорастворим в воде, легче воздуха. Чистый ацетилен при охлаждении сжижается при -83,8°С, а при дальнейшем понижении температуры быстро затвердевает. Он умеренно растворим в воде (1150 мл в 1 л воды при 15°С и атмосферном давлении) и хорошо в органических растворителях, особенно в ацетоне (25 л в 1 л ацетона при тех же условиях и 300 л под давлением 12 атм). Термодинамически ацетилен неустойчив: он взрывается при нагревании до 500° С, а при обычной температуре – при повышении давления до 2 атм. Поэтому его хранят в баллонах, наполненных пористым инертным материалом, который пропитан ацетоном.
Химические свойства
Для ацетилена (этина) характерны реакции присоединения, димеризации, полимеризации, цикломеризации.
Ацетилен с водой, в присутствии солей ртути и других катализаторов, образует уксусный альдегид (реакция Кучерова). В силу наличия тройной связи, молекула высокоэнергетична и обладает большой удельной теплотой сгорания — 14000 ккал/м3. При сгорании температура пламени достигает 3300°С (5972 °F). Ацетилен может полимеризироваться в бензол и другие органические соединения (полиацетилен, винилацетилен). Для полимеризации в бензол необходим графит и температура в 400 °C.
Кроме того, атомы водорода ацетилена относительно легко отщепляются в виде протонов, то есть он проявляет кислотные свойства. Так ацетилен вытесняет метан из эфирного раствора метилмагнийбромида (образуется содержащий ацетиленид-ион раствор), образует нерастворимые взрывчатые осадки с солями серебра и одновалентной меди. Ацетилен обесцвечивает бромную воду и раствор перманганата калия.
Способ производства
В промышленности ацетилен часто получают действием воды на карбид кальция , а также при дегидрировании двух молекул метана при температуре свыше 1400°C.
Применение
Ацетилен используют для так называемой автогенной сварки и резки металлов. Для этого нужны два баллона с газами — с кислородом и с ацетиленом. Газы из баллонов поступают в специальную горелку. При сгорании ацетилена в кислороде получается очень горячее пламя; максимальная его температура (3200° С) достигается при содержании ацетилена 45% по объему. В таком пламени очень быстро расплавляются даже толстые куски стали.
Как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды (карбидка).
Ацетилен может служить исходным продуктом для синтеза многих более сложных органических соединений. Эта область применения ацетилена в настоящее время является самой обширной. Ацетилен – реакционноспособное соединение, вступающее в многочисленные реакции. Химия ацетилена богата. Из него можно получить сотни разнообразных соединений.
Он используется в производстве взрывчатых веществ (ацетилениды), для получения уксусной кислоты, этилового спирта, растворителей, пластических масс, каучука, ароматических углеводородов.
Преимущества ацетилена при газопламенной обработке металлов
Применение ацетилена для газопламенной обработки металлов испытывает сильную конкуренцию со стороны более доступных горючих газов (природный газ, пропан–бутан и тд.). Однако, преимущество ацетилена – в самой высокой температуре горения, которая достигает 3200 ° С. Именно поэтому газопламенная обработка ответственных узлов машиностроительных конструкций производится только с помощью ацетилена, который обеспечивает наивысшую производительность и качество процесса сварки.
Сравнительные характеристики пламени при сварке различным газами
Газ | Температура пламени, °C |
Ацетилен | 3000 – 3200 |
МАФ | 2930 |
Пропан | 2600-2750 |
Водород | 2100-2500 |
Метан | 2000-2200 |
Хранение и перевозка ацетилена
Хранят и перевозят ацетилен в заполненных инертной пористой массой (древесным углем или литой пористой массой) стальных баллонах белого цвета (с красной надписью «АЦЕТИЛЕН») в виде раствора в ацетоне под давлением 1,5-2,5 МПа. Растворенный ацетилен в баллонах перевозят всеми видами транспорта в соответствии с правилами перевозки опасных грузов, действующими на данном виде транспорта.
Опасные факторы и меры безопасности
Ацетилен – взрывоопасный газ. С воздухом образует взрывоопасную смесь. Температура самовоспламенения ацетилена 335°С. Температура воспламенения ацетилено-воздушных смесей 305-470°С, ацетилено-кислородных 297-306°С,
При хранении ацетилена и его применении необходимо заботиться о достаточной вентиляции и учесть правила классификации электрооборудования. Открытое пламя и курение категорически запрещены.
Ацетилен обладает слабым токсическим действием. При длительном вдыхании технического ацетилена появляется рвота и головокружение.
Ацетилен взрывоопасен при следующих условиях:
– при нагреве до 450-500°С и одновременном повышении давления от 1,5 –2,0 атмосфер ацетилен взрывается без внешнего источника воспламенения;
– в смеси с воздухом, если в воздухе содержится ацетилена в пределах от 2,3–80,7% по объему;
– в смеси с кислородом, если ацетилена содержится в пределах от 2,3-93% по объему;
– ацетилено-воздушные и ацетилено-кислородные смеси взрываются при наличии искры, открытого огня, нагретой поверхности или какого-либо другого источника воспламенения.
– при длительном соприкосновении ацетилена с красной медью и серебром образуются взрывчатые соединения, которые взрываются при ударе и повышении температуры;
– при контакте с водой ацетилен способен образовывать твердый кристаллогидрат, представляющий собой кристаллическое вещество белого цвета, напоминающий снег или лед.
Все применяемые материалы, в т.ч. неметаллические части, как, например, заглушки вентилей, прокладки и мембраны должны обладать стойкостью к ацетилену и его растворителям.
Ацетиленовая проводка должна быть стальной. Детали, изготовленные из серебра, меди или сплава, содержащего более 65% меди, нельзя применять из-за опасности образования взрывоопасных соединений меди и ацетилена.
Ацетилен – свойства и характеристики
Ацетилен – бесцветный горючий газ C2H2 с атомной массой 26,04, немного легче воздуха. Обладает резким запахом.
В промышленности ацетилен обычно получают из карбида кальция (CaC2) при разложении последнего водой.
Ацетилен самовоспламеняется при температуре 335°С, смесь ацетилена с кислородом воспламеняется при температуре 297–306°С, смесь ацетилена с воздухом – при температуре 305–470°С.
Ацетилен взрывоопасен при следующих условиях:
при увеличении температуры более 450–500°С и давления более 1,5–2 ат (около 150–200 кПа);
при атмосферном давлении ацетилено-кислородная смесь с содержанием ацетилена от 2,3 до 93% взрывается от искры, пламени, сильного местного нагрева и др.;
при аналогичных условиях смесь ацетилена с воздухом взрывается при содержании в ней ацетилена от 2,2 до 80,7%;
в результате длительного соприкосновении ацетилена с серебром или медью образуется взрывчатое ацетиленистое серебро или медь, взрывающиеся при повышении температуры или ударе.
Взрыв ацетилена способен вызвать значительные разрушения и тяжелые несчастные случаи: при взрыве 1 кг ацетилена выделяется примерно в два раза больше тепла, чем при взрыве 1 кг тротила и примерно в 1,5 раза больше, чем при взрыве 1 кг нитроглицерина.
Меры безопасности при работе с ацетиленом
содержание ацетилена в воздухе рабочей зоны необходимо непрерывно контролировать автоматическими приборами, сигнализирующими о превышении допустимой взрывобезопасной концентрации ацетилена в воздухе, равной 0,46%;
при работе с ацетиленовыми баллонами поблизости не должно быть открытого пламени или отопительной системы; запрещается работать с баллонами, находящимися в горизонтальном положении, с незакрепленными баллонами, с неисправными баллонами; необходимо использовать неискрящийся инструмент, освещение и электрическое оборудование только во взрывобезопасном исполнении;
в случае обнаружения утечки ацетилена из баллона (по запаху и звуку) необходимо по возможности быстро закрыть вентиль баллона специальным неискрящимся ключом;
при нагреве баллон с ацетиленом может взорваться с крайне разрушительными последствиями; в случае пожара необходимо по возможности удалить из опасной зоны холодные баллоны с ацетиленом, оставшиеся баллоны постоянно охлаждать водой или специальными составами до полного остывания; при загорании ацетилена, выходящего из баллона, необходимо по возможности быстро закрыть вентиль баллона специальным неискрящимся ключом и поливать баллон водой до полного остывания; при сильном возгорании пожаротушение необходимо производить с безопасного расстояния; при пожаротушении рекомендуется применять огнетушители с содержанием флегматизирующей концентрации азота 70% по объему, диоксида углерода 57% по объему, водяные струи, песок, сжатый азот, асбестовое полотно, токораспыленную пену и воду; при тушении сильного пожара используются огнезащитные костюмы, противогазы и т.п.
Применение ацетилена при сварке
Ацетилен – основной горючий газ, используемый при газовой сварке, а также широко применяется для газовой резки (кислородной резки). Температура ацетилено-кислородного пламени может достигать 3300°C. Благодаря этому ацетилен по сравнению с более доступными горючими газами (пропан-бутаном, природным газом и др.) обеспечивает более высокое качество и производительность сварки.
Снабжение постов ацетиленом для газовой сварки и резки может осуществляться
от баллонов с ацетиленом и
от ацетиленового генератора.
Для хранения ацетилена обычно используются стандартные баллоны емкостью 40 л, окрашенные в белый цвет, с надписью «Ацетилен» красного цвета (ПБ 10-115-96, ГОСТ 949-73). Согласно ГОСТ 5457-75 для газопламенной обработки металлов применяется технический ацетилен растворенный марки Б и газообразный.
Таблица. Характеристики марок технического ацетилена (ГОСТ 5457-75), используемого при сварке и резке.
Параметр Ацетилен технический
растворенный марки Б газообразный
первого сорта второго сорта
Объемная доля ацетилена C2H2, %, не менее 99,1 98,8 98,5
Объемная доля воздуха и других газов, малорастворимых в воде, %, не более 0,8 1,0 1,4
Объемная доля фосфористого водорода PH3, %, не более 0,02 0,05 0,08
Объемная доля сероводорода H2S, %, не более 0,005 0,05 0,05
Массовая концентрация водяных паров при давлении 101,3 кПа (760 мм рт. ст.) и температуре 20°С, г/м3, не более 0,5 0,6 не нормируется
что соответствует температуре насыщения, не выше (°C) -24 -22
Баллоны заполнены пористой массой, пропитанной ацетоном. Ацетилен хорошо растворяется а ацетоне: при нормальной температуре и давлении в 1 л ацетона растворяется 23 л ацетилена (в 1 л бензина растворяется 5,7 л ацетилена, в 1 л воды – 1,15 л ацетилена). Пористая масса выполняет следующие функции:
повышает безопасность при работе с баллоном – за счет пористой массы общий объем ацетилена разделен на отдельные ячейки; таким образом, вероятность распространения общего фронта горения и взрыва значительно уменьшается;
позволяет повысить количество ацетилена в баллоне, ускорить процесс его растворения при заполнении баллона и выделении при отборе газа – поскольку при использовании пористой массы, пропитанной ацетоном, обеспечивается большая поверхность взаимного контакта между газом и ацетоном.
В качестве пористых масс могут применяться активированный уголь, пемза, волокнистый асбест.
Таблица. Допустимое давление газа в баллоне в зависимости от температуры (при номинальном давлении 1,9 МПа / +20°С) (ГОСТ 5457-75)
Температура, °С -5 0 +5 +10 +15 +20 +25 +30 +35 +40
Давление в
баллоне,
не более МПа 1,34 1,4 1,5 1,65 1,8 1,9 2,15 2,35 2,6 3
кгс/см2 13,4 14 15 16,5 18 19 21,5 23,5 26 30
Таблица. Остаточное давление газа в баллоне, поступающем от потребителя (ГОСТ 5457-75)
Температура, °С до 0 от 0 до +15 от +15 до +25 от +25 до +35
Остаточное
давление в баллоне,
не менее МПа 0,05 0,1 0,2 0,3
кгс/см2 0,5 1 2 3
40-литровые баллоны с максимальным давлением газа 1,9 МПа при температуре 20°С обычно заполняют 5–5,8 кг ацетилена (4,6–5,3 м3 газа при температуре 20°С и давлении 760 мм рт. ст.). Масса ацетилена в баллоне определяется по разности масс баллона до и после наполнения газом. Объем ацетилена равен отношению его массы и плотности. Так, объем 5,5 кг ацетилена при температуре 20°С и давлении 760 мм рт. ст. составляет 5,5/1,09 = 5,05 м3.
Таблица. Сравнительные характеристики ацетилена, пропана и метилацетилен-алленовой фракции (МАФ)
Параметр ацетилен пропан МАФ
Чувствительность к удару, безопасность нестабилен стабилен стабилен
Токсичность незначительная
Предел взрываемости в воздухе (%) 2,2–81 2,0–9,5 3,4–10,8
Предел взрываемости в кислороде (%) 2,3–93 2,4–57 2,5–60
Температура пламени (°С) 3087 2526 2927 *
Реакции с обычными металлами избегать сплавов, содержащих более 70% меди незначительные ограничения избегать сплавов, содержащих более 65–67% меди
Склонность к обратному удару значительная незначительная незначительная
Скорость сгорания в кислороде (м/с) 6,10 3,72 4,70
Плотность газа (кг/м3) 1,17 (при 0°С)
1,09 (при 20°С) 2,02 (при 0°С) 1,70 (при 0°С) *
Плотность в жидком состоянии при 15,6°С (кг/м3) – 513 575
Отношение расхода кислорода к горючему газу (м3/м3) при нормальном пламени 1–1,2 3,50 2,3–2,5
Ацетилен – газ с самой высокой температурой пламени!
При нормальном давлении и температуре от -82,4°С (190,6 К) до -84,0°С (189 К) ацетилен переходит в жидкое состояние, а при температуре -85°С (188 К) затвердевает, образуя кристаллы плотностью 0,76 кг/м 3 . Жидкий и твердый ацетилен легко взрывается от трения, механического или гидравлического удара и действия детонатора. Технический ацетилен при нормальных давлении и температуре представляет собой бесцветный газ с резким специфическим чесночным запахом из-за содержащихся в нем примесей в виде сернистого водорода, аммиака, фосфористого водорода и др.
В 1836 г. в Бристоле на заседании Британской ассоциации Эдмунд Дэви (Edmund Davy), профессор химии Дублинского Королевского общества и двоюродный брат Гемфри Дэви (Humphry Davy), сообщил:
. При попытке получить калий, сильно нагревая смесь прокаленного винного камня с древесным углем в большом железном сосуде, я получил черное вещество, которое легко разлагалось водой и образовывало газ, оказавшийся новым соединением углерода и водорода. Этот газ горит на воздухе ярким пламенем, более густым и светящимся даже сильнее, чем пламя маслородного газа (этилена). Если подача воздуха ограничена, горение сопровождается обильным отложением сажи. В контакте с хлором газ мгновенно взрывается, причем взрыв сопровождается большим красным пламенем и значительными отложениями сажи. Дистиллированная вода поглощает около одного объема нового газа, однако при нагревании раствора газ выделяется, по-видимому, не изменяясь. Для полного сгорания нового газа необходимо 2,5 объема кислорода. При этом образуются два объема углекислого газа и вода, которые являются единственными продуктами горения. Газ содержит столько же углерода, что и маслородный газ, но вдвое меньше водорода. Он удивительно подойдет для целей искусственного освещения, если только его удастся дешево получать.
Дэви получил карбид калия К2С2 и обработал его водой.
В статье «Карбид кальция и ацетилен – друзья не разлей вода!» мы писали о том, что его «двууглеродистый водород» впервые был назван ацетиленом французским химиком Пьером Эженом Марселеном Бертло (Marcellin Berthelot) в 1860 г. Только через 60 лет после открытия Дэви предсказанное им использование ацетилена для освещения явилось первым толчком для его промышленного получения.
Для полного сгорания 1 м 3 ацетилена по реакции: С2Н2 + 2,5O2=2СO2 + Н2O + Q1
требуется теоретически 2,5 м 3 кислорода или = 11,905 м 3 воздуха. При этом выделяется тепло Q1 ≈ 312 ккал/моль. Высшая теплотворная способность 1 м 3 ацетилена при 0°C и 760 мм рт. ст., определенная в газовом калориметре, составляет QВ = 14000 ккал/м 3 (58660 кДж/м 3 ), что соответствует расчетной:
312×1,1709×1000/26,036 = 14000 ккал/м 3
Низшая теплотворная способность при тех же условиях может быть принята QH = 13500 ккал/м 3 (55890 кДж/м 3 ).
Практически при сжигании – ацетилена в горелках при восстановительном пламени в горелку подается не 2,5 м 3 кислорода на 1 м 3 ацетилена, а всего лишь от 1 до 1,2 м 3 у что примерно соответствует неполному сгоранию по реакции:
где Q2 ≈ 60 ккал/моль или 2300 ккал/кг ацетилена. Остальные 1,5-1,3 м 3 кислорода поступают в пламя из окруающего воздуха, в результате чего в наружной оболочке пламени протекает реакция:
Реакция неполного горения протекает на внешней оболочке светящегося внутреннего конуса пламени, причем под влиянием высокой температуры на внутренней поверхности конуса происходит распад ацетилена на его составляющие по реакции:
где Q4≈54 ккал/моль или 2070 ккал/кг ацетилена.
Таким образом, общая полезная теплопроизводительность пламени ацетилена применительно к сварочным процессам представляет собой сумму тепла, выделяемого при распаде ацетилена, и тепла, выделяемого при неполном сгорании, что составляет Q4 + Q2 = 2070 + 2300 = 4370 ккал/кг или 4370×1,1709 ≈ 5120 ккал/м 3 .
При содержании ацетилена в смеси около 45% (т. е. при отношении кислорода к ацетилену, примерно равном 1,25) достигается максимальная температура ацетилено-кислородного пламени, которая составляет 3200°С. Следовательно температура пламени изменяется в зависимости от состава смеси.
При содержании 27% ацетилена достигается максимальная скорость воспламенения ацетилено-кислородной смеси, которая равна 13,5 м/сек. Следовательно, в зависимости от состава смеси также изменяется и скорость воспламенения.
Данные зависимостей скорости воспламенения и температуры пламени и от содержания в ней ацетилена представлены ниже в таблице.
Содержание ацетилена в смеси в объемных процентах
В зависимости от соотношения кислорода и ацетилена в горючей смеси, сварочное пламя может быть нормальным, окислительным или науглероживающим.
Для нормального пламени характерно отношение ацетилена к кислороду от 1:1 до 1:1,3. В нем отчетливо выражены все три зоны – ядро, средняя зона и факел.
Окисленным называют пламя, в котором есть избыток кислорода. В нем ядро имеет бледную окраску, меньшую длину и размытые очертания. Длина средней части и факела тоже короче. Такое пламя горит с шумом и его температура выше, чем нормального. Оно окислено, окисляет металл сварочной ванны, способствует получению пористости и значительно снижает качество шва. Такое пламя рекомендуется применять при сварке латуней, при пайке высокотемпературными припоями.
Пламя с избытком ацетилена называют науглероживающим. Его ядро также имеет нерезкие очертания, на его конце виден зеленый венчик. Средняя зона этого пламени светлее и почти сливается с ядром. Факел имеет желтоватую окраску, иногда на конце наблюдается копоть. Температура науглераживающего пламени ниже температуры нормального. Это пламя науглераживает металл, делая его хрупким. Его рекомендуется применять при сварке чугуна.
5) Для различной толщины свариваемого металла рекомендуется применять различную мощность свариваемого пламени, которая характеризуется часовым расходом ацетилена в литрах. В процессе сварки пламя не только расплавляет металл, но и защищает расплавленную ванну от вредного влияния кислорода и азота атмосферного воздуха. Поэтому при сварке необходимо, чтобы расплавленный основной металл и конец присадочного металла находились все время в восстановительной зоне пламени (в средней зоне).
Большое влияние на качество шва имеет угол наклона пламени горелки, который берется в зависимости от толщины свариваемых заготовок. Чем больше толщина заготовки, тем больше угол наклона горелки (Рис. 3).
Рис.3. Угол наклона горелки в зависимости от толщины в зависимости от толщины свариваемого металла
Изменением угла наклона мундштука горелки к поверхности свариваемого металла можно изменять интенсивность расплавления металла. Наиболее интенсивно металл расплавляется при перпендикулярном расположении мундштука к поверхности металла. При сварке же очень тонких и, особенно, легкоплавких металлов, мундштук следует располагать почти параллельно поверхности свариваемого металла. При сварке тонколистового металла и соединений с отбортовкой кромок, горелку следует передвигать прямолинейно, без поперечных колебаний. Если же свариваемый металл толстый – толщиной более 3 мм, то горелка должна совершать поперечные колебания наряду с прямолинейным перемещением, чтобы дольше воздействовать пламенем на металл.
6) В зависимости от направления перемещения горелки и присадочного прутка по шву различают левый и правый способы сварки(Рис.4).
При левом способе впереди перемещается присадочный металл, а за ним горелка. Левый способ более простой и применяется при сварке листов толщиной до 5 мм.
При правом способе впереди перемещается горелка, а за ней присадочный металл. Правый способ сложнее левого, но более производительный и экономически выгодный. Применяется этот способ при сварке более толстого металла – толщиной более 5 мм.
А б
Рис. 4.Способы газовой сварки:
а – левый; б – правый
1 – присадочный пруток; 2 – газовая горелка
Применение левого и правого способа в большей степени все-таки зависит от практических навыков сварщика.
Газовую сварку можно выполнять в различных пространственных положениях: нижнем, вертикальном, горизонтальном и потолочном.
Вертикальные швы выполняют левым способом, а горизонтальные и потолочные – правым.
2.1.3. Используемые газы.
Кислород. Основное назначение кислорода, используемого при газопламенной обработке – интенсифицировать горение газа с возможно большим тепловыделением. Кислород применяют трех сортов:
Газообразный технический первого сорта чистотой 99,7%;
второго сорта чистотой 99,5%;
третьего сорта чистотой 99,2%.
Примеси азота и аргона в техническом кислороде составляют 0.3…0,8%. Кислород при нормальной температуре представляет собой газ без цвета и запаха. Кислород получают разделением воздуха методом глубокого охлаждения или получают электролизом – разложением воды припропускании через нее электрического тока. Температура сжижения кислорода при нормальном атмосферном давлении -182,9 0 С, в твердое состояние он переходит при -218,4 0 С. Жидкий кислород транспортируют в специальных теплоизолированных сосудах – танкерах, газообразный – в стальных баллонах под давлением 15 МПа (150 атм). Танкеры, баллоны и другое оборудование для кислорода окрашивается в голубой цвет.
При соприкосновении с маслами кислород взрывается!
Ацетилен – горючий газ, представляющий собой химическое соединение углерода с водородом. Ацетилен получают из карбида кальция или из природного газа, нефти, угля. Ацетиленполучают из карбида кальция при взаимодействии последнего с водой. Реакция протекает с выделением значительного количества тепла
Теоретически для разложения 1 кг карбида кальция требуется 0,562 дм 3 , а практически во избежание перегрева ацетилена расходуют 5-20 дм 3 воды. Средний выход ацетилена составляет 0,23-0,28 м 3 /кг.
Карбид кальция получают сплавлением извести и кокса в электрических печах при температуре 1900 …2300 0 С. Карбид кальция транспортируют в стальных герметически закрытых барабанах.
При температурах от -82,4 0 С до -83,6 0 С ацетилен превращается в жидкость, а при понижении температуры до -85 0 С переходит в твердое состояние. В жидком и твердом состоянии ацетилен очень взрывоопасен и взрывается от трения или удара. Ацетилено-кислородная смесь очень взрывоопасна при наличии в ней 2,9 … 93% ацетилена (по объему). Взрывоопасна и ацетилено-воздушная смесь при содержании в ней ацетилена даже до 2,2%.
Ацетилен для сварки поступает из генератора, в котором его получают или из металлических баллонов. В баллонах ацетилен находится в смеси с ацетоном под давлением 1,5-1,6 МПа. Для безопасности баллон с ацетиленом заполняют древесным углем, создающим систему капиллярных сосудов.
Дата добавления: 2016-03-22 ; просмотров: 1728 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ