Кислородно водородная горелка своими руками
Водородная горелка своими руками
Водородная горелка, как и следует из названия, работает за счет тепла, выделяемого при сжигании водорода. Газовая смесь водорода и кислорода (HHO — две молекулы водорода и одна кислорода) называется у нас гремучим газом, а у «них» — газом Брауна. Водород в совокупности с кислородом обладает самой большой температурой горения среди газов — до 2800 °C. Однако водород крайне взрывоопасен. Как, в общем-то, любой газ, поставляемый в больших баллонах под высоким давлением.
Преимущество же водорода (или HHO газа) перед другими видами заключается в возможности получения его методом электролиза из обыкновенной воды! Причем для создания водородной горелки своими руками нам совершенно не нужно накапливать водород в какие-либо баллоны. Водородная электролизная горелка производит газ в необходимых для моментального сжигания количествах. Это значительно повышает безопасность газовой сварки или резки с применением водородной горелки на базе электролизного HHO генератора. Пользуясь такой водородной горелкой, мы полностью исключаем вероятность взрыва газа, ведь весь производимый газ тут же сгорает и не успевает накапливаться в объемах, необходимых для взрыва. Благодаря этому часто применяется водородная горелка и для ювелирных работ, потому как мастера ювелиры, создающие свое домашнее производство, вряд ли будут пользоваться дома газовыми баллонами, что, наверняка, даже не законно!
Я тоже решил построить водородную горелку своими руками на базе HHO генератора, в качестве которого выступает обычный электролизер. И ведь еще в школе я ставил опыты с электролизом, засовывая в банку с водой оголенные провода из розетки через выпрямительный диод. Сейчас я хочу повторить свои школьные опыты, только теперь в более крупном масштабе и более осознанно.
Что же нужно для постройки водородной горелки своими руками?
- Лист нержавеющей стали
- Пара болтов М6 х 150. Шайбы и гайки по вкусу.
- Кусок прозрачной трубки. Например, подойдет водяной уровень из строительного магазина. Там шланг 10 метров стоит всего около 300 рублей.
- Несколько штуцеров с «елочкой» внешним диаметром 8мм (как раз под шланг от водяного уровня).
- Пластиковый контейнер 1,5 литра за 110 рублей из хозяйственного магазина (для герметичной упаковки пищевых продуктов).
- Фильтр для проточной очистки воды маленький (для стиральной машинки).
- Обратный клапан для воды.
Какая нужна нержавейка? В идеальном варианте марка на буржуйский манер должна быть AISI 316L, что соответствует нашей нержавеющей стали 03Х16Н15М3. Но я специально не заказывал нержавейку, а взял кусок, который удалось отыскать в сарае. Купить целый лист довольно накладно: при толщине в 2мм на него уйдет около 5000 рублей, да еще нужно как-то его доставить, а размеры у него метр на два! У меня нашелся кусочек около 50 х 50 см.
Почему, собственно, нержавейка? Дело в том, что обычная сталь подвергается коррозии в воде. Кроме того, для достижения максимального эффекта мы будем использовать не воду, а щелочь, а это уже агрессивная среда. Кроме того, мы будем пропускать через наш электролит электрический ток. Поэтому обычные металлические пластины долго в таких условиях не проживут.
Я разметил свой листик, и получил 16 примерно квадратных пластин из нержавеющей стали для постройки своей водородной горелки своими руками. Пилил как обычно — болгаркой. Обратите внимание на форму пластины — с одной стороны у нее спилен уголок. Это нужно для того, чтобы в дальнейшем особым образом скрепить пластины между собой.
С противоположной стороны от среза сверлим отверстие под болт М6, которым мы будем скреплять пластины между собой. Отверстия в нижней части пластины мне оказались не нужны. Дело в том, что я просверлил их на всякий случай, если вдруг задумаю делать сухой электролизер. Но его конструкция несколько сложнее, да и площадь пластин в нем используется крайне неэффективно. В общем, у меня и так пластин мало, поэтому я хочу использовать их по максимуму, поэтому выбрал вариант «мокрого» электролизера для HHO генератора. В этом случае пластины целиком погружаются в электролит, и в процессе генерации газа Брауна (HHO или гремучего газа) участвует вся площадь пластины из нержавейки.
Суть водородного генератора, который лежит в основе горелки, заключается в том, что при прохождении постоянного электрического тока через электролит от одной пластины к другой, вода (которая содержится в электролите) разлагается на составляющие компоненты: водород и кислород. Значит нам нужно иметь две пластины: положительную и отрицательную (анод и катод).
Чем больше площадь пластин, тем больше площадь воздействия на электролит, тем больший ток пройдет через воду и тем больше HHO газа у нас образуется. Поэтому на анод и катод мы повесим сразу несколько пластин. В моем случае получилось по 8 пластин на анод и катод.
Для изоляции пластин разной полярности между собой я использовал кусочки той же трубки от водяного уровня.
На самом деле существует множество вариантов включения, и этот не самый оптимальный. Он является просто более простым с точки зрения изготовления и крепления пластин на электродах. Как видно из фотографии, у меня пластины просто чередуются + — + — + — + — и т.д. Такая схема включения рассчитана на малое питающее напряжение и очень большой ток для получения достаточного количества газа для создания водородной горелки своими руками.
Или делаем вот такой Электролизер принцеп одинаковый на нем может даже ездить авто но про это позже
Добавляем сайт в закладки или лайкаем на соц сети чтобы не пропустить что то новое .
ВОТ ТОЖЕ ОЧЕНЬ ПОЛЕЗНОЕ ВИДЕО НА ЭТУ ТЕМУ
Водородная горелка в домашних условиях
В данной статье автор описывает процесс создания водородной горелки в домашних условиях. Представленное устройство не имеет накопительных баллонов для газа, что делает его довольно безопасным в эксплуатации. Водород производится методом электролиза, и вырабатывается из обычной воды. Газ, производимый в необходимых количествах ННО генератором, тут же сжигается в горелке, что исключает возможность его накапливания и взрыва.
Необходимые материалы для постройки горелки:
– Пластины из нержавейки, примерно 1 мм толщиной;
– Два болта М6х150 с шайбами и гайками;
– Кусок прозрачной трубки;
(В проекте использовалась трубка из водяного уровня)
– Штуцера с «елочкой»;
(их диаметр подбирается под шланг с водяного уровня)
– Пластиковый контейнер на полтора литра;
(подойдет обычный контейнер для хранения пищи)
– Фильтр проточной очистки;
(можно использовать фильтр стиральной машинки)
– Обратный водный клапан.
Инструменты используются стандартные, которые имеются в каждой мастерской.
Первым шагом будет создание сердца ННО генератора – электролизер. Он выполнен из листов нержавеющей стали, расположенных последовательно друг за другом через равные промежутки и скрепленных болтами.
Как говорится в источнике, марка нержавеющей стали нужна либо зарубежная AISI316L, ее отечественный аналог 03X16H15M3. Но это в идеале, в принципе можно использовать любую.
Почему используется именно нержавеющая сталь, а не к примеру обычный черный метал, ведь он тоже проводит ток? Дело в том что, во первых черный метал ржавеет в воде, во вторых в воду при работе аппарата будет добавляться щелочь, что при условии прохождения электрического тока будет создавать для пластин достаточно агрессивную среду, в которой обычное железо просто долго не протянет.
Из листа нержавейки нужно вырезать 16 квадратных пластин. По размеру они должны быть такими, чтобы свободно входили в пластиковый контейнер. Резать их можно болгаркой или лобзиком.
После этого, в каждой пластине просверливается по два отверстия, диаметром 6 мм, под болты. С противоположной стороны нужно спилить часть уголка.
Вот что должно получится:
Теперь еще немного теории. Принцип работы водородного генератора основывается на том, что при прохождении постоянного электрического тока через электролит между пластинами, ток расщепляет воду на ее составляющие: кислород и водород.
Из этого следует, что из пластин будут собраны две электрически изолированных друг от друга батареи, на одну из которых будет поступать плюс, на другую минус (анод и катод).
Вот как это выглядит схематически:
Такое количество пластин нужно для того, чтобы повысить площадь электрического воздействия на электролит, тем самым увеличив ток, проходящий через электролит, и как следствие количество вырабатываемого водорода.
Существует довольно много вариантов подключения пластин, и данный вариант не является самым оптимальным. Он используется, потому что является довольно простым в изготовлении и коммутации.
Данная схема рассчитана на малое напряжение и большой ток.
Для изоляции пластин друг от друга были использованы кусочки прозрачной трубки:
Толщина кольца должна равняться приблизительно 1 мм.
Скрепляются пластины так: на болт одевается шайба, затем пластина, затем три шайбы, пластина, три шайбы и т.д. Так собираются анод и катод, по 8 пластин.
Затем одна батарея вставляется в другую, развернувшись на 180 градусов. Между пластинами в качестве диэлектрика вставляются вырезанные ранее кусочки трубки.
После сборки две батареи прозваниваются между собой, и если нет короткого замыкания, устанавливаются в контейнер.
В контейнере просверливаются отверстия под болты, на них будет поступать напряжение.
В крышке контейнера просверливается отверстие под штуцер. Перед установкой самого штуцера, его посадочное место лучше промазать герметиком или силиконом. То же самое касается и прилегающей поверхности крышки. Чтобы проверить контейнер на герметичность его можно опустить в емкость с водой. Если на нем появятся пузырьки, значит контейнер не герметичный.
Для повышения генерации газа, в воду необходимо добавить некоторые примеси. Лучше всего подойдет гидроксид натрия, который содержится в средствах для прочистки труб от засоров.
Добавлять его следует осторожно, подключив в схему амперметр и следя за его показаниями.
Источник питания лучше использовать с регулировкой напряжения, от 0 до 12 вольт. Чем больше его мощность, тем лучше.
Далее остается установить обратный клапан и фильтр. Обратный клапан предотвратить попадание газа обратно в контейнер. Проточный фильтр так же служит в роли водяного затвора.
Устройство готово, осталось подключить блок питания и ацетиленовую горелку со шлангом.
Кислородно водородная горелка своими руками
no images were found
Так вот, это то же самое, только мощнее на два-три порядка. Эта хренотень даёт мощный, чрезвычайно горячий язык пламени тупо из воды со щёлочью. Никаких баллонов с газами, никаких редукторов, заправок и прочей мути — только подай напряжение. А если надуть ей шарик, и отпустить его с горящей ниткой…
Что нужно для получения более-менее мощного потока газа? Правильно, большая площадь электродов, причём объём газа в секунду ей прямо пропорционален. Не буду вдаваться в расчёты, тем более что сам я их не проводил, просто сообщу оптимальные параметры. Суммарная площадь электродов для достойного внимания потока газа должна быть не менее 1000 см^2 (суммарно по аноду и катоду), желательно — от 2000 см^2. Плотность тока должна быть порядка 0.08-0.15А/см^2 (8-15А/дм^2): при большем токе будет иметь место перегрев электролита и закипание — то есть, пена, тысячи её; при меньшем — теряем в газовыделении. Падение на одной паре электродов для такого тока получается 2-3 вольта, в зависимости от концентрации электролита (я взял 10%, это соответствует примерно 2.2-2.3 вольта падения). При таких обстоятельствах качать две огромных пластины сотнями ампер тока при двух вольтах представляется не очень разумным решением. Гораздо лучше соединить несколько ячеек последовательно: тогда мы сможем увеличить рабочее напряжение и площадь электродов во много раз при том же токе. А теперь осталось только сообразить, что одна пластина электрода может быть с одной стороны катодом одной ячейки, а с другой — анодом другой.
Короче, просто набираем бигмак из чередующихся кольцеобразными прокладками пластин. Больше пластин — больше напряжение при том же токе; больше площадь одной каждой пластины — больший ток при том же напряжении. Увеличение числа пластин увеличивает суммарное падение на них напряжения. На схеме всё понятно видно.
В каждой пластине необходимо проделать отверстия снизу и сверху на расстояниях чуть меньше диаметра прокладки друг от друга (но не менее 0.5-1 см от края прокладки) — для газообмена и для распределения электролита по ячейкам. Хватит где-то 5 мм сверла.
Щёлочь. Подойдёт NaOH или KOH, желательно чистый, а не технический. Начинать с концентрации 10% по массе (в дистиллированной воде), дальше экспериментировать. Выше концентрация — выше ток, но больше пены.
Стягивающие пластины. Требуется нечто очень слабо гнущееся и жёсткое. Идеально и классика постройки — толстое, двухсантиметровое оргстекло. В нём же можно проделать выводы и резьбу под газ и доп. топливный бачок. У меня не было оргстекла, я просто впаял медные трубки в последнюю нержавеющую пластину, а для стяжек использовал 27 мм фанеру.
Перво-наперво следует сделать водный затвор. Водород-кислородная смесь, HHO, невероятно злая штуковина. Она с лёгкостью детонирует, да и сгорает весьма резво, не требуя притом никаких окислителей (кислород-то есть).
Как сделать водородную горелку своими руками?
Водородная горелка своими руками – это вполне посильная задача для опытного мастера и новичка, вооруженного подробными рекомендациями о ее самостоятельном изготовлении. Этот прибор работает благодаря выделяемому водорода теплу. Смесь водорода с кислородом – это газ с наибольшей возможной температурой горения – 2800°С. Его называют гремучим или газом Брауна. Однако при работе с этой смесью необходимо быть осторожным, так как она очень взрывоопасна.
Схема генератора с водородной горелкой.
Водород обладает определенными преимуществами перед другими горючими газами. Например, его можно получить путем электролиза непосредственно из воды. Самостоятельно изготовленная водородная горелка не требует использования водорода в баллонах. Электролизная горелка способна сама поставлять газ в необходимых количествах. Благодаря этому водородная сварка является очень экономичным и наиболее безопасным способом.
Самодельный сварочный аппарат с водородной горелкой можно сделать на основе электролизного генератора. Вероятность взрыва газа с использованием такого оборудования полностью исключается, так как весь газ сразу же пускается на сварку и не накапливается в достаточном для взрыва количестве.
Что потребуется для изготовления горелки?
Электрическая схема водородной горелки.
Перед началом работ рекомендуется подготовить все необходимо для изготовления прибора.
Чтобы сделать водородную горелку, нужно запастись таким материалами:
- листовая нержавеющая сталь;
- 2 болта М6х150 с гайками и шайбами;
- прозрачная трубка, например, такая, как в водяном уровне;
- штуцеры с внешним диаметром соответствующим шланге;
- герметичный пластиковый контейнер объемом 1,5 литра;
- маленький фильтр для очистки приточной воды;
- обратный водный клапан.
К выбору нержавейки необходимо подходить ответственно. Желательно выбирать марку импортной стали AISI 316L или отечественный аналог – 03Х16Н15М3. Однако если есть небольшой кусочек нержавеющей стали 50х50 см толщиной 2 мм, то приобретать целый лист нет необходимости.
Использовать нужно именно нержавейку, так как она не подвергается коррозии в воде в отличие от обычной стали.
Кроме того, водородная сварка будет более эффективной, если использовать щелочь, а не простую воду. Щелочная среда является агрессивной, поэтому использовать обычную сталь недопустимо.
Особенности изготовления
Нержавейку нужно распилить на небольшие пластинки. Из куска 50х50 см получится 16 пластинок по форме приближенных к квадрату. Распилить металл можно болгаркой, один из углов каждой пластины необходимо спилить, чтобы в дальнейшем можно было соединить их между собой.
На противолежащей срезу стороне нужно просверлить отверстия для крепежных болтов, чтобы потом соединить элементы. Работа приспособления будет основываться на том, что постоянный ток, проходя через раствор электролита последовательно от пластины к пластине, будет расщеплять воду на кислород и водород. Для обеспечения этого процесса необходимо создать пластины с противоположными зарядами: положительным и отрицательным.
Для наибольшей эффективности работы прибора необходимо, чтобы площадь пластин была максимальной. Это обеспечит максимальную площадь воздействия на раствор, через воду пройдет максимальный ток, благодаря чему образуется наибольшее возможное количество газа. Чтобы добиться желаемого результата, необходимо обеспечить положительный и отрицательный заряд наибольшему возможному количеству пластин. При 16 пластинах на анод и катод приходится по 8 элементов.
Пластины разной полярности необходимо изолировать друг от друга. Для этого можно использовать кусочки прозрачной трубы.
Таким образом, при помощи самодельного водородного генератора и горелки можно осуществлять безопасную сварку металлов.