Технология механизированной сварки под флюсом
Дуговая механизированная сварка под флюсом без присадочного металла
Сварка под флюсом – разновидность дуговой сварки. Особенность процесса – защищенность от воздействия воздуха флюсом. Кроме защиты шва флюс дает возможность создать стабильное горение, обеспечить раскисление, очистку и легирование металла. Этот вид сварки бывает ручной и механизированный (автоматический, полуавтоматический). Ручная сварка не позволяет обеспечить однородность и надлежащее качество шва, ограничена по производительности. Дуговая механизированная сварка без использования присадочного металла под флюсом дает возможность расширить сферы применения и повысить производительность.
Технология сварочного процесса
Метод простой – слой флюса 30-60 мм подается в зону дуги, покрывает и защищает материал. Дуга располагается в защищенном пространстве, расплавляет металл и сварочную проволоку, жидкие материалы соединяются. Защитная газообразная атмосфера вытесняет небольшой объем основного расплавленного материала, начинает провариваться следующий слой. Флюс препятствует разбрызгиванию жидкого металла и нерациональному использованию тепла дуги, повышая качество шва.
Проволока подается из специального механизма, оснащенного двумя роликами: ведущим и прижимным. Скорость подачи не отличается от скорости плавления, это обеспечивает равномерное горение дуги. Электроэнергия подается через головку со встроенным мундштуком.
Шов образуется в процессе перемещения дуги параллельно материалу. Ванна постепенно остывает, жидкий материал кристаллизуется, образуется шов. Флюс образует на поверхности корку, замедляющую остывание и способствующую избавлению от газов и примесей. Шов получается плотный, чистый, однородный по составу.
Важно! Механизация процесса позволяет обеспечить небольшой вылет и быструю подачу электрода. Это увеличивает мощность тока в 6-8 раз (если сравнивать с ручной сваркой), что позволяет увеличить производительность до 10-и раз. Можно обрабатывать более толстые детали, увеличить объем основного материала в шве до 70%. Сварщика можно заменить высококвалифицированным оператором.
Качество шва зависит от:
- вида и полярности тока, напряжения;
- диаметра и вылета проволоки;
- вида и плотности флюса;
- положения материала и электрода;
- скорости процесса.
Согласно ГОСТ 2246-70 для работы со сталью используется стальная проволока с диаметром 0,3-12 мм.
Проволока поставляется в кассетах и бухтах. Если она долго храниться, перед применением требуется промывка керосином или бензином, чтобы убрать ржавчину. Если выполняются работы с алюминием, требуется проволока по ГОСТ 7871-75, при сварке меди — по ГОСТ 16130-72.
Флюс выбирается в зависимости от требуемых характеристик шлака и защитных газов, уровня устойчивости к образованию трещин.
Сферы применения
Механизированная дуговая сварка без присадочного металла под флюсом – основной способ соединения плавлением. Кроме низкоуглеродистых сталей, позволяет работать с легированной и низколегированной сталью, сплавами с добавлением никеля, алюминием, медью, титаном, их сплавами. Швы устойчивы к агрессивным средам, высокому давлению, вакууму, высоким и низким температурам.
Это вид обработки плавлением применяется в цехах для сварки различных по составу металлов. Возможно соединение разнородных материалов. Таким способом изготавливаются однотипные конструкции с длинными сварными швами.
Важно! На практике детали толщиной более 60 мм свариваются редко (теоретически показатель можно увеличивать до 150 мм).
Оборудование
Рынок предлагает две разновидности аппаратов этого типа: с автоматически регулируемой и саморегулируемой подачей проволоки. Первый вид позволяет использовать проволоку с диаметром, превышающим 3 мм, второй – до 3 мм. Саморегулирующееся оборудование подает проволоку с неизменной скоростью, которая меняется вручную вместе с изменением параметров дугового промежутка. Автоматические аппараты отличаются изменением напряжения дуги вслед за изменениями в параметрах скорости проволоки.
Режим настраивается изменением тока дуги. В саморегулирующемся оборудовании параметры тока настраиваются по требуемой скорости подвода проволоки. В автоматах напряжение задается при помощи пульта, во время работы сохраняется неизменной. Скорость сварки, объем флюса, длина электрода регулируется одинаково на всех аппаратах.
Преимущества и недостатки
Этот вид механической сварки обладает как преимуществами, так и недостатками. К преимуществам можно отнести:
- высокую скорость выполнения работ, высокую производительность;
- множество сфер применения;
- возможность сэкономить за счет небольших потерь электродов (до 2%);
- отсутствие необходимости дополнительно обрабатывать швы;
- отсутствие сварочных деформаций, компактность и прекрасный вид швов;
- высокая устойчивость шва к механическим нагрузкам благодаря медленному охлаждению;
- надежная защита зоны выполнения работ (нет брызг) освобождает от необходимости обеспечивать работников индивидуальными средствами защиты;
- возможность сэкономить за счет вентиляции;
- небольшие затраты на обучение персонала;
- независимость результата от субъективного фактора.
При выборе способа обработки металла необходимо учитывать и недостатки:
- возможность выполнять только горизонтальные швы, если нет дополнительного оборудования;
- невозможность сваривать очень тонкие листы;
- невозможность сваривать без разделки кромки материалы с толщиной от 16 мм;
- возможность повышения легирования из-за перемешивания основного материала с проволокой;
- затруднения при сложной конфигурации шва из-за невозможности видеть и контролировать процесс;
- трудность удаления шлаковой корки;
- высокие затраты на проволоку, флюсы.
Сварочные аппараты используются в различных сферах промышленности. Чтобы обеспечить высокую производительность, необходимо правильно подобрать оборудование. Хотя процесс универсальный, для разных металлов выпускается отдельные аппараты. Многое зависит так же от условий эксплуатации.
По конструкции сварочные аппараты бывают:
- мобильные (на колесах);
- переносные (с ручкой);
- стационарные (устанавливаются на консоль).
Перед покупкой требуется анализ условий на предприятии и выполняемых работ. Основной критерий – возможность выполнить максимум работ при минимальных затратах.
Автоматическое оборудование можно использовать для больших и маленьких швов, в труднодоступных местах. Но эти аппараты разработаны для выполнения большого количества однотипных работ в стационарных условиях. В процессе сварки изменить качество шва невозможно, так как параметры определяются автоматически. Преимущество – возможность использовать вместо флюса защитные газы.
Работа полуавтомата зависит от человека. Это оборудование чаще всего мобильное, поэтому подходит для различных производственных площадей для создания коротких швов в больших количествах или сварки толстых материалов. Полуавтомат не подойдет, если работы выполняются в помещении со сквозняками или на открытом воздухе.
Важно! Цена сварочного оборудования зависит от предназначения. Самые дорогие профессиональные аппараты. Важен так же производитель. Импортное оборудование гораздо дороже, чем отечественное.
Технология автоматической сварки под флюсом
Любому практикующему сварщику известно, что кислород оказывает негативное влияние на качество и долговечность шва. Попадая в сварочную ванну кислород способствует повышенному окислению и становится причиной трещин. Чтобы избавиться от этой проблемы существует множество способов: начиная от специальной обработки металла, заканчивая применением особых комплектующих, например, флюсов.
Один из наиболее популярных методов качественного соединения металлов — автоматическая сварка под слоем флюса. С ее помощью можно сварить такие непростые металлы, как медь, алюминий и нержавеющую сталь. Автоматическая сварка ускоряет и упрощает работу, а флюс выполняет защитную функцию. В этой статье мы кратко расскажем, что такое автоматическая дуговая сварка под флюсом и какова техника автоматической сварки под флюсом.
Общая информация
Автоматическая дуговая сварка под слоем флюса — это технология, суть которой ничем не отличается от классической дуговой сварки. Металл плавится из-за высокой температуры, которая формируется благодаря электрической дуге. Ниже изображена схема автоматической дуговой сварки под флюсом.
Отличие автоматической сварки от любой другой заключается лишь в том, что большинство процессов выполняется не вручную, а с помощью специальных станков. Например, подача проволоки и движение дуги. Ну а в нашем конкретном случае все эти операции производятся под слоем флюса, нанесенного на поверхность металла.
Область применения
Автоматическая наплавка под флюсом применяется во многих сферах. С ее помощью можно организовать быстрое крупносерийное производство, в том числе конвейерное. По этой причине данная технология незаменима при сборке кораблей, производстве крупногабаритных труб и емкостей для нефтеперерабатывающей отрасли. Автоматическая сварка обеспечивает высокое качество швов, поэтому завоевала свое уважение в таких ответственных отраслях.
Роль флюса
С автоматической сваркой все ясно. А вот что насчет флюса? Что это такое?
Флюс — это специальное вещество (может выпускаться в виде порошка, гранул, паст и жидкостей), обладающее положительными свойствами. Флюсы толстым слоем подаются прямо в сварочную зону, защищая ее от негативного влияния кислорода. Также флюс защищает сам металл, способствует устойчивому горению дуги, уменьшает вероятность разбрызгивания металла и даже изменяет химический состав шва при необходимости.
Виды применяемых флюсов
Перед тем, как провести сварку под флюсом, неплохо было бы узнать, какие вообще бывать разновидности. Прежде всего, всю флюсы делятся по назначению. Они могут быть для сварки углеродистых и легированных сталей, для высоколегированных сталей и для цветных металлов. Это первое, на что стоит обратить внимание перед покупкой флюса.
Также флюсы могут быть плавлеными или керамическими. Их отличие в составе. В большинстве случаев используется именно плавленый флюс, поскольку он относительно универсальный и стоит недорого. С его помощью можно эффективно защитить сварочную ванну от кислорода. Но не ждите от плавленого флюса каких-то особых качеств. Если вам необходимы действительно отличные свойства шва, то выберите керамический флюс. Он обеспечивает отличное качество.
Также флюсы могут быть химически активными и химически пассивными. Активный флюс содержит в составе кислоты, способные не только защитить металл при сварке, но и привести к коррозии. Так что тщательно удаляйте флюс после работы. Пассивные флюсы в автоматической сварке не применяются, поскольку не обладают достаточными для этого свойствами. Зачастую вы встретите пассивный вещества при пайке в виде воска или канифоли.
Кстати, о производителях. Это давний спор всех начинающих и опытных сварщиков. Кто-то считает, что отечественные компании производят недорогой и эффективный флюс, а кто-то всеми руками за импортные комплектующие. Мы не будем однозначно говорить, что лучше, скажем лишь то, что на практике и отечественные, и импортные флюсы показывают себя хорошо, если соблюдена технология сварки.
Достоинства и недостатки
У автоматической сварки с применением флюса есть много плюсов. Ее главное достоинство — возможность полной автоматизации процесса сварки. От сварщика не нужно даже уметь варить, достаточно знать, как настроить оборудование. Также такой метод сварки гарантирует отличное качество сварочных соединений, поскольку отсутствует человеческий фактор.
У технологии сварки деталей автоматической наплавкой под слоем флюса есть и недостатки. Во-первых, вы сможете варить только нижний швы. Также детали должны быть очень точно подогнаны, ведь машина формирует шов в четко заданном месте, и любая ошибка при стыковке приведет к браку. Кроме того, нужна очень тщательная подготовка металла перед сваркой.
Учтите, что у вас не получится сварить металл на весу. Деталь нужно будет зафиксировать на горизонтальной поверхности и предварительно проварить корень сварного соединения. Еще один существенный недостаток — большая стоимость как оборудования для автоматической сварки, так и комплектующих.
Теперь, когда вам все известно, пора узнать, какова технология автоматической сварки под флюсом.
Технология сварки
Прежде всего, перед сваркой необходимо подготовить металл. Для каждого металла подготовка своя, но мы дадим общие рекомендации. Нужно очистить деталь от грязи, краски и коррозии. Затем нужна тщательная зачистка поверхности с помощью металлической щетки или шлифовального круга. Только после подготовительных операций можно приступать к сварке.
Технология сварки под флюсом проста за счет того, что многие процессы выполняет не человек, а машина. Мастеру не нужна зажигать дугу, следить за ее стабильностью, выбирать скорость подачи проволоки и так далее. Все, что от вас требуется — правильно настроить режимы сварки под флюсом. По сути, задать машине программу действий. Ниже таблица с перечислением режимов автоматической сварки под флюсом.
Это режимы автоматической сварки под флюсом для стыковых соединений. Естественно, существуют и другие типы соединений, поэтому для них нужно произвести расчет режимов сварки. Здесь мы не будем касаться этой темы, поскольку она очень обширна (сколько типов соединений, столько и формул), поэтому изучите эту информацию самостоятельно. В интернете много способов расчета.
При работе также используется специальная присадочная проволока для сварки под флюсом. Ее подача тоже автоматизирована, нужно лишь загрузить бобину в подающий механизм. Рекомендуем приобретать проволоку, изготовленную из того же металла, что и деталь.
Теперь немного о флюсе. Он тоже подается автоматически, только предварительно его нужно насыпать в специальный резервуар. Толщина слоя флюса зависит от толщины свариваемого металла. Чем металл толще, тем больше нужно флюса.
У вас может возникнуть закономерный вопрос: а плавится ли флюс? И влияет ли он на структуру шва? Да, конечно флюс плавится под действием температуры. Но при этом он никак не нарушает структура шва, а лишь улучшает ее. Но при этом застывший флюс превращается в шлак, который после сварки нужно удалить. Остатки неиспользованного флюса можно использовать повторно.
Подобная технология применения флюса при автоматической сварке позволяет существенно увеличить скорость работ, при этом не потеряв в качестве.
Вместо заключения
Теперь вам известна автоматическая сварка с флюсом и что это такое. Конечно, помимо автоматической сварки есть еще ручная сварка под флюсом, полуавтоматическая сварка под флюсом и механизированная сварка под флюсом. Но в рамках одной статьи не раскроешь всех нюансов этих видов сварки, поэтому мы рассказываем вам о них постепенно. Статьи на эти, и многие другие темы вы сможете найти на нашем сайте. Делитесь в комментариях своим мнением и опытом. Мастера могут рассказать свои секреты применения флюса при автоматической сварке и поделиться знаниями. Желаем удачи!
Технология автоматической и механизированной сварки под слоем флюса
Технология автоматической и механизированной сварки под слоем флюса. При сварке под слоем флюса дуга горит в закрытой полости, защищенной от воздействия атмосферы эластичной оболочкой расплавленного флюса. Металл шва состоит на 2 /3 из расплавленного основного металла и на ‘/з из расплавленного присадочного металла. При автоматической сварке возбуждение дуги, поддержание ее горения, подача электродной проволоки, перемещение дуги вдоль шва и заварка кратера в конце шва механизированы.
Производительность сварки под слоем флюса в 5—10 раз выше производительности ручной дуговой сварки, что достигается за счет увеличения плотности тока дуги, сокращения машинного времени вследствие повышения скорости сварки, уменьшения количества наплавленного присадочного металла вследствие глубокого проплавления основного металла и повышения коэффициента наплавки.
Высокое качество сварного соединения обеспечивается за счет надежной защиты сварочной ванны от воздействия кислорода и азота воздуха, получения металла шва более однородного по химическому составу, увеличения плотности металла шва и формирования его без наплывов, подрезов и чешуйчатости.
Дуговую сварку под флюсом выполняют сварочными автоматами: подвесными сварочными головками (АД-320, АД-321, АДФ-500, АДФ-1002, А-1406, А-1412, А-1416 и др.) или самоходными тракторами, перемещающимися непосредственно по изделию (ТС-17, ТС-17М, ТС-35, АДФ-10030, АДФ-1202 и др.).
Автоматическую сварку под флюсом применяют в серийном и массовом производстве для выполнения длинных прямолинейных и кольцевых швов в нижнем положении на металле толщиной
2. 100 мм. Такой способ сварки широко применяют при изготовлении котлов, резервуаров для хранения жидкостей и газов, корпусов судов, балок мостовых кранов и т. п.
При механизированной сварке под слоем флюса плавящимся электродом механизируется подача сварочной проволоки в зону дуги. Для этого служит подающий механизм — сварочная головка. Манипуляции дугой для поддержания заданного режима, придания шву нужной формы и перемещение дуги по мере наложения шва вдоль свариваемых кромок осуществляются рабочим, обслуживающим полуавтомат вручную. Сварочная проволока от подающего механизма к держателю в большинстве случаев поступает по гибкому шлангу. Главное достоинство механизированной сварки заключается в том, что с ее помощью можно выполнять такие швы, которые невыгодно или неудобно сваривать автоматом.
Можно применять сплошную или порошковую проволоки. Сварку выполняют на установках ПШ-5, ПШ-112, ПДО-517, А-765, А-1197, А-1234 и др.
Для того чтобы воспрепятствовать вытеканию жидкого металла и шлака в зазор между свариваемыми кромками, сварку стыковых швов производят на весу, на флюсовой подушке, на медной или флюсомедной подкладке, в замок, на остающейся технологической подкладке, после ручной сварки корня шва (рис. 3.20).
Рис. 3.20. Сварка стыкового шва на остающейся стальной подкладке (а), соединением в замок (б), по ручному сварному шву (в)
Стыковые соединения листов стали толщиной до 20 мм в нижнем положении обычно сваривают односторонними однопроходными швами.
Сварка на весу возможна при условии плотной и точной сборки кромок без зазора. Глубина провара не должна превышать 2 /3 толщины металла; такой способ применяют при изготовлении неответственных конструкций и при сварке тонкого металла.
Сварку на остающейся подкладке применяют для соединения листов толщиной до 10 мм. Подкладка должна плотно прилегать к свариваемым кромкам. При сварке частично проплавляется подкладка и приваривается к нижней части кромок. Зазор между подкладкой и кромками должен быть не более 0,5. 1 мм. Сварка применяется в тех случаях, когда наличие подкладки по конструкции допустимо.
При сварке на флюсовой подушке (рис. 3.21) к нижней стороне свариваемых листов поджимается слой флюса, препятствующий вытеканию сварочной ванны. Между листами должен быть зазор
4. 5 мм. Качество швов, их формирование определяется равномерностью поджатия флюсовой подушки и равномерностью зазора в стыке.
При сварке на медной подкладке обеспечивается получение качественных швов при условии плотного поджатия подкладки к свариваемым кромкам со стороны корня шва. Наличие зазоров не допускается. В производственных условиях трудно соблюсти такие жесткие требования, предъявляемые к сборке изделий, особенно при сварке толстолистового материала длинномерными
Рис. 3.21. Сварка стыкового шва на флюсовой подушке
швами. Поэтому этот способ не нашел широкого практического применения.
При сварке на флюсомедной подкладке между медной подкладкой и нижней стороной свариваемых листов искусственно создают тонкую флюсовую прослойку. Флюс насыпают через зазор между кромками или насыпают на подкладку до укладки листов. Размеры канавки для формирования корня шва: ширина 12. 20 мм; глубина
Слой флюса между кромками и подкладкой играет роль флюсовой подушки. Наличие медной подкладки устраняет опасность проседания швов в случае неравномерного поджатия. Флюсомедные подкладки применяют при сварке односторонних кольцевых швов.
Сварка двусторонних швов является основным высокопроизводительным способом сварки под флюсом стыковых швов металла толщиной более 12 мм. Способ менее экономичен по сравнению с односторонней сваркой, но зато менее чувствителен к колебаниям режима сварки, отклонению электрода от линии стыка и не требует сложных устройств для получения полного провара.
При режиме сварки под флюсом принимают во внимание диаметр электродной проволоки, сварочный ток, напряжение на дуге, скорость подачи электродной проволоки и скорость сварки.
Диаметр электродной проволоки dnp (мм) определяют по формуле
где j — допустимая плотность тока, А/мм 2 .
Плотность тока изменяется в пределах от 120 до 40 А/мм 2 при изменении d3 от 2 до 5 мм.
Силу сварочного тока (А) приближенно находят по соотношению
где к = 80. 110 А/мм при изменении от 2 до 5 мм; h — глубина проплавления, мм. (При односторонней сварке принимают h = S, а при двусторонней — h = 0,6 S.)
Напряжение (В) дуги определяют по выражению
Скорость подачи электродной проволоки v3 (м/ч) рассчитывают по выражению
где vCB — скорость сварки, м/ч; FH — площадь поперечного сечения
наплавленного металла, см 2 ; /с — площадь поперечного сечения
Площадь поперечного сечения наплавленного металла можно принимать по таким же графикам, как и при ручной дуговой сварке (можно принимать ан= 14. 17 г/(А ч)).
Параметры режима сварки стальных соединений под слоем флюса приведены в табл. 3.4.
Таблица 3.4. Параметры режима сварки стальных соединений под слоем флюса
Сварка под флюсом – все достоинства и тонкости процесса
Автоматическая сварка под флюсом представляет собой один из наиболее часто используемых в наши дни метод осуществления сварочных мероприятий в строительстве и промышленности.
1 Дуговая сварка под флюсом – ГОСТ 8713-79 и 11533-75
Принципы выполнения такого вида сварочных работ были разработаны в конце 19 столетия Н.Славяновым. А вот практические основы электродуговой сварки заложил Д.Дульчевский в 1927 году. Тогда же им был создан и первый в мире сварочный агрегат, функционировавший в автоматическом режиме. Это изобретение весьма активно начало внедряться на строительных и промышленных объектах Советского Союза.
Сам же процесс сварки (как, впрочем, и оборудование для него) постоянно совершенствовался силами ученых НИИ электросварочных агрегатов СССР, ЦНИИ Тяжелого машиностроения, Институтом Е.О.Патона. Согласно ГОСТ 8713-79 сварочные работы с применением флюса изделий и конструкций из сплавов и сталей на никелевой и железоникелевой основе могут быть по способам выполнения следующими:
- механизированными: МФ – на весу, МФш – с наложением предварительно подварочного шва, МФо – на остающейся прокладке;
- автоматическими: АФо – на подкладке, АФф – на флюсовой подушке, АФк – с подваркой (предварительной) корня шва, АФп – на медном ползуне, АФ – на весу, АФш – с наложением (предварительным) шва подварочного, АФм – на флюсомедной прокладке.
К основным видам сварных соединений в этом случае относят:
- одностороннее, двухстороннее, одностороннее замковое стыковое: со скосом кромок (в том числе и с криволинейным), со скосами (симметричными) одной кромки, с ломаным скосом, без скоса с обязательной строжкой впоследствии, с отбортовкой кромок, с несимметричными скосами обеих кромок;
- одно- и двухстороннее угловое: несимметричные скосы, со скосом и без такового, а также с отбортовкой;
- одно- и двухстороннее нахлесточное без скоса;
- двух- и одностороннее тавровое.
А вот в ГОСТ 11533-75 описывает все типы дуговой полуавтоматической и автоматической сварки изделий из низколегированных и углеродистых сталей, которые расположены под тупыми и острыми углами. К таким типам относят сварку:
- дуговую полуавтоматическую на стальной подкладке – Пс, полуавтоматическую – П и полуавтоматическую с подварочным швом – Ппш;
- автоматическую с подварочным швом, накладываемым предварительно – Апш;
- автоматическую на подкладке из стали – Ас.
2 Сущность и технология механизированной и автоматической сварки
Данный процесс предполагает, что дуга между изделием и концом сварочного электрода горит под флюсом – слоем специального сыпучего соединения. Основной металл и электродная проволока начинают расплавляться в результате теплового воздействия дуги. В это же время отмечается и расплавление некоторого объема используемого флюса. В итоге в сварочной зоне формируется газовая полость, которая наполняется парами сыпучего соединения и металла, а также газами.
В верхней своей области полость ограничивается расплавленным флюсом. Он предохраняет расплавленный металл и сварочную дугу от негативного влияния окружающей среды. Кроме того, он производит в сварочной ванне обработку (металлургическую) металла. Расплавленный флюс в процессе удаления дуги затвердевает за счет реакции со сталью, что приводит к формированию шлаковой корки. Избавиться от нее по окончании сварки несложно, следует только дождаться охлаждения изделия.
Пневматический специальный механизм, располагающий флюсоустройством, собирает ту часть флюса, которая не была израсходована. Впоследствии она вновь применяется для сварки.
Технология сварочного процесса с использованием флюса имеет ряд нюансов и достоинств:
- Теоретическая возможность применения токов величиной до 4 тысяч ампер (на практике используют ток в пределах 1000–2000 ампер). При открытой дуге данный показатель не может быть более 600 ампер, так как в этом случае правильное создание шва станет фактически нереальным из-за разбрызгивания металла. При этом производительность сварочных мероприятий увеличивается существенно быстрее, нежели растет сила тока. Также отмечается сам характер формирования шва.
- Закрытая дуга в процессе сварки имеет высокую мощность. За счет этого основной металл расплавляется на большую глубину, что дает возможность в некоторых случаях не осуществлять разделку кромок (открытая маломощная дуга способна лишь немного расплавить кромки шва).
- Производительность сварочного процесса (под ней понимают получаемый метраж шва за один час работы дуги) под флюсом до 10 раз выше, чем при выполнении работ с использованием открытой дуги (подразумевается, что сварочные токи при этом характеризуются идентичными значениями).
- Формирование “газового пузыря”, в котором флюс выполняет функции его стенок, значительно снижает потери на разбрызгивание и угар. Величина таких потерь равняется максимум двум процентам от массы электродного расплавленного металла. Благодаря этому, процесс гарантирует получение высококачественных и равномерных швов. Немаловажным является и то, что электродная проволока расходуется по-настоящему экономно. Кроме того, расходуется намного меньше электрической энергии.
Конкретные режимы сварки под флюсом подбираются по основным и дополнительным характеристикам. К первым относят:
- сечение электродной проволоки;
- полярность и род тока;
- скорость сварочного процесса;
- напряжение дуги.
К дополнительным же параметрам причисляют:
- геометрические величины и плотность флюса, а также его состав;
- вылет проволоки (электродной);
- положение при сварке того или иного вида электрода и непосредственно свариваемой конструкции.
3 Какие материалы используют для сварочных работ под флюсом?
От грамотного подбора электродной проволоки зависит качество сварки. Ее химсостав устанавливает механические параметры шва. Рекомендуется применять стальную проволоку, которая соответствует Государственному стандарту 2246-70. Изготавливают ее из легированной, низкоуглеродистой и высоколегированной стали. Диаметры готовой проволоки при этом стандартизированы, они варьируются в пределах от 0,3 до 12 мм.
Поставляется такая продукция обычно в 80-метровых (не более) бухтах, реже в кассетах либо катушках (требуется согласие потребителя). Перед использованием проволоки, хранившейся некоторое время на складах, профессионалы советуют производить ее очистку и специальную несложную обработку бензином или керосином, что позволяет удалить ржавчину и загрязнения с изделия.
Для сварки изделий из алюминиевых листов выпускают проволоку по стандарту 7871-75. Также часто применяют омедненную проволоку (ГОСТ 16130-72), которая не требует предварительной обработки перед сваркой. На условия протекания сварочного процесса и качество шва, конечно же, оказывает влияние и то, какой флюс был выбран. Его состав определяет характеристики газовой атмосферы и жидкого шлака. От взаимодействия последнего с металлом в свою очередь зависит и структура металла шва. А она обуславливает стойкость против формирования трещин.
Выбирая флюсы, стоит помнить, что они необходимы для:
- легирования металла шва;
- изоляции (физического плана) сварочной ванны от окружающей среды;
- создания поверхности шва;
- стабилизации разряда дуги.