Теплоемкость чугуна и стали
Теплофизические свойства чугуна
Коэффициент линейного расширения α, удельная теплоемкость с и теплопроводность λ зависят от состава и структуры чугуна, а также от температуры. Поэтому значения их приводят в соответствующем интервале температур. С повышением температуры значения α и с обычно увеличиваются, а λ уменьшается (табл 1).
Температура, °C | α, 1/°C | c, Дж/(кг∗°C) | λ, Вт/(м∗°C) |
---|---|---|---|
60 | 10,0 | 502 | 54,4 |
160 | 11,0 | 523 | 50,2 |
260 | 13,1 | 553 | 48,1 |
360 | 13,7 | 586 | 46,0 |
510 | 15,9 | 620 | — |
Коэффициент линейного расширения α и удельная теплоемкость c реальных неоднородных структур, в том числе чугуна, может быть определена по правилу смешения:
Структурная составляющая | α 100 200, 1/°C | c 100 ,Дж/(кг∗°C) | λ 100 Вт/(м∗°C) |
Феррит | 12,0-12,6 | 460-470 | 72,8-75,5 |
Аустенит | 18-19 | 502 | 41,8 |
Цементит | 6,0-6,5 | 615 | 49,0 |
Перлит | 10,0-11,6 | 486 | 50,3-51,9 |
Графит | 1,4-3,7 | 795 | 355,8 |
Теплопроводность сплавов и смесей в отличие от коэффициента α и теплоемкости c не может быть определена по правилу смешения. Влияние отдельных элементов на теплопроводность расчетным путем можно установить лишь приближенно.
На коэффициент α и удельную теплоемкость с влияет главным образом состав чугуна, а на теплопроводность λ — степень графитизации, дисперсность структуры, неметаллические включения и т. п.
Коэффициент линейного расширения определяет не только изменения размеров в зависимости от температуры, но и напряжения, образующиеся в отливках. Уменьшение α является полезным с этих позиции и облегчает условия получения качественных отливок. Но в случае совместной работы чугунных деталей с деталями из цветных сплавов или других материалов, имеющих больший коэффициент линейного расширения, приходится стремиться к увеличению значения α для чугуна.
Теплоемкость и теплопроводность имеют большое значение для таких отливок, как отопительные трубы, изложницы, детали холодильных установок и двигателей внутреннего сгорания и т.д., так как определяют равномерность распределения температуры в отливках и интенсивность отвода теплоты.
В табл. 3 приведены теплофизические свойства чугунов различных групп.
Чугун | α20 100 ∗10 6 , 1/°C | c20 100 , Дж/(кг∗°C) | c20 1000 , Дж/(кг∗°C) | λ20 100 , Вт/(м∗°C) |
---|---|---|---|---|
Серый с пластинчатым графитом (ГОСТ 1412-85): | СЧ10-СЧ18 | 10-11 | 502-544 | 586-628 | 46,0-54,4 |
СЧ20-СЧ30 | 10-11 | 502-544 | 586-628 | 41,8-50,2 |
СЧ35 | 11,5-12,0 | 502-544 | 628-670 | 37,6-46,0 |
Высокопрочный (ГОСТ 7293-85): | ||||
ВЧ 35-ВЧ 45 | 11,5-12,5 | 460-502 | 586-628 | 37,6-46,0 |
ВЧ 60-ВЧ 80 | 10-11 | 502-523 | 628-670 | 33,5-41,9 |
ВЧ 100 | 9-10 | 523-565 | 628-670 | 29,3-37,6 |
Ковкий (ГОСТ 7769-82): | ||||
КЧ 30-6/КЧ 37-12 | 10,5-11,0 | 460-511 | 586-628 | 54,4-62,8 |
КЧ 45-5/КЧ 65-3 | 10,3-10,8 | 527-544 | 628-670 | 50,2-54,4 |
Легированный (ГОСТ 7769-82) | ||||
никелевый ЧН20Д2Ш | 17-19 | — | 460-502 | 17,4 |
с 35-37% Ni | 1,5-2,5 | — | — | — |
хромистый: | ||||
ЧХ16 | — | — | — | 32,5 *1 |
ЧХ22 | — | — | — | 25,5 *1 |
ЧХ28 | 9-10 | — | — | 17,4 *1 |
ЧХ32 | 9-10 | — | — | 19,8 *1 |
кремнистый: | ||||
ЧС5 | 14-17 *2 | — | — | 21,0 *3 |
ЧС15, ЧС17 | 4,7 *1 | — | — | 10,5 |
алюминиевый: | ||||
ЧЮ22Ш | 17,5 *1 | — | — | 15,1-28,0 *3 |
ЧЮ30 | 22-23 *2 | — | — | — |
*1В интервале 20-200 °C. | ||||
*2В интервале 20-900 °C. | ||||
*3В интервале 20-500 °C. |
Коэффициент линейного расширения α
Коэффициент линейного расширения α. Наибольшее влияние на коэффициент α оказывает углерод, в особенности в связанном состоянии. Одному проценту углерода соответствует примерно в 5 раз большее количество цементита, чем графита. Поэтому графитизирующие элементы (Si, Al, Ti, Ni, Сu и др.) повышают, а антиграфнтизирующие (Cr, V, W, Мо, Мn и др.) уменьшают коэффициент линейного расширения,
Наибольшим значением α отличаются аустенитные никелевые чугуны, а также ферритные алюминиевые чугуны типа чугаль и пирофераль. Поэтому при достаточно высоком содержании Ni, Сu, Мn значение α; резко увеличивается. Однако при содержании Ni>20% α понижается : и достигает минимума при 35—37 % Ni. Форма графита существенно влияет на коэффициент линейного расширения лишь при низких температурах; α высокопрочного чугуна с шаровидным графитом несколько выше, чем α чугуна с пластинчатым графитом.
Удельная теплоемкость чугуна
Удельная теплоемкость с чугуна, как и железа, увеличивается с повышением температуры (см. табл. 2) и характеризуется скачкообразным повышением при фазовом превращении Feα→Feλ; затем удельная теплоемкость чугуна резко падает, но с дальнейшим повышением температуры вновь увеличивается.
Графитизация понижает удельную теплоемкость чугуна; отсюда с белого; чугуна несколько выше, чем серого и высокопрочного (см. табл. 4).
Теплопроводность чугуна.
Теплопроводность чугуна в большей мере, чем другие физические свойства, зависит от структуры, ее дисперсности и мельчайших загрязнений, т. е. является структурно-чувствительным свойством.
Графитизация повышает теплопроводность; следовательно, элементы увеличивающие степень графитизации и размер графита, повышают, а элементы, препятствующие графитизации и увеличивающие дисперсность структурных составляющих, понижают. Указанное влияние графитизация меньше для шаровидного графита (см. табл. 4).
Форма графита, его выделение и распределение также влияют на теплопроводность. Например, высокопрочный чугун имеет более низкую теплопроводность, чем серый чугун. Теплопроводность чугуна с вермикулярным графитом (ЧВГ) выше, чем у ЧШГ, и близка к λ серого чугуна с пластинчатым графитом.
Высоколегированные чугуны характеризуются, как правило, более низкой теплопроводностью, чем обычные.
Дамир.рф
Ванны и батареи физика
Принципы расчета теплоёмкости металлической посуды применимы для батарей и ванн.
Чугунная батарея остывает дольше.
Еще раз обращу внимание, что темпы остывания предмета напрямую зависят от массы и удельной теплоёмкости материала, из которого он изготовлен. Не путать теплоёмкость и теплопроводность!
Чугунная батарея тяжелее алюминиевой раза в три. Следовательно, обладает большей теплоёмкостью в 2,5 раза.
Очень часто задают вопрос: почему чугунные батареи остывают дольше стальных?
И удельные теплоёмкости — 540 Дж/(кг*К) для чугуна и 460 Дж/(кг*К) для стали — относительно мало отличаются (15%). А весь секрет — в значительной степени — заключается в существенно большей массе чугунных батарей.
Масса секции батарей:
Металл секции | Масса секции, кг |
---|---|
алюминий | 0,5 — 1,5 |
биметалл (сталь с алюминием) | 1,5 |
чугун | 3,7 — 5,9 |
Если же сравнивать две одинаковые по массе батареи — из стали и чугуна — то при одинаковой температуре прогрева чугунная батарея сохранит тепла больше на 15%.
Чугунная ванна сохраняет тепло.
Чугунная ванна:
Масса | 100 кг |
Коэффициент удельной теплоёмкости чугуна | 540 Дж/(кг*К) |
Теплоёмкость самой ванны из чугуна | 100 кг * 540 Дж/(кг*К) = 54 кДж/К |
Стальная ванна:
Масса | 30 кг |
Коэффициент удельной теплоёмкости стали | 720 Дж/(кг*К) |
Теплоёмкость самой ванны из стали | 30 кг * 720 Дж/(кг*К) = 21,6 кДж/К |
То есть количество выделяемого тепла при остывании на 1 градус у чугунной ванны больше, чем у ванны из стали (в нашем примере) в 2,5 раза.
Теплоёмкость воды в ванне:
Объем | 100 литров = 0,1 куб. м |
Плотность воды | 1000 кг/куб. м |
Коэффициент удельной теплоёмкости воды | 4183 Дж/(кг*К) |
Теплоёмкость воды в ванне | 0,1 куб. м * 1000 кг/куб. м * 4183 Дж/(кг*К) = 418,3 кДж/К |
Из чего следует, температура горячей воды (40 градусов), налитая в ванну при комнатной температуре (20 градусов) упадет на 1 градус для стальной ванны и на 2,5 градуса для чугунной ванны.
Похожие статьи:
Металлическая посуда глазами физика
Возвращаясь к теме металлической посуды, покажу в цифрах физику процессов.
Теплопроводимость.
Теплопроводность численно равна количеству теплоты (Дж), проходящее через единицу площади (кв.м) за единицу времени (сек) при единичном температурном градиенте.
Коэффициенты теплопроводности из справочника:
Металл | Коэффициент теплопроводности, Вт/(м*К) |
---|---|
Медь | 390 |
Алюминий | 236 |
Сталь | 47 |
Чугун | 42 |
Вывод: чугун распределяет тепло медленно. Иными словами, мясо на чугунной сковороде не будет пригорать (в том числе) из-за более равномерного распределения тепла.
Похожая ситуация в приготовлении шашлыка на природе. Приготовление мяса на углях позволяет пропечь куски. Приготовление на открытом огне просто зажаривает внешнюю часть кусков мяса, оставив внутренние части сырыми.
Теплоёмкость.
Теплоёмкость численно равна количеству теплоты (Дж), которое необходимо передать, чтобы изменить его температуру на единицу (К).
Удельная теплоёмкость.
Удельная теплоёмкость – количество теплоты (Дж), которое необходимо передать единице массы вещества (кг), чтобы его температура изменилась на единицу температуры (К).
Иными словами, чтобы посчитать теплоёмкость металлической посуды – сколько тепловой энергии будет в прогретой до нужной температуры посуде – необходимо массу посуды (кг) умножить на удельную теплоёмкость металла (Дж/(кг*К)), из которого она изготовлена.
Значения удельной теплоёмкости из справочника:
Металл | Удельная теплоёмкость, Дж/(кг*К) |
---|---|
Алюминий | 930 |
Чугун | 540 |
Сталь | 460 |
Медь | 385 |
Приблизительные массы металлических сковород:
Сковорода | Масса, кг |
---|---|
Алюминиевая сковорода с ручкой (диаметр 260 мм) | 0,65 |
Чугунная сковорода с ручкой (черный чугун; диаметр 250 мм; глубина 40 мм) | 2,10 |
Вывод: чугунная посуда массой 2,1кг будет почти в два раза (1,9 раза) больше отдавать тепла, чем алюминиевая посуда массой 0,65кг. И наоборот, чугунная посуда требует в два раза больше энергии для прогрева, чем алюминиевая посуда.
Иными словами, для поддержания (сохранения) температуры готовки чугунная посуда подходит лучше. А для разогрева еды будет более пригодна алюминиевая посуда.
Чугун СЧ30
![]() |
![]() |
Марка: СЧ30 | Класс: Чугун серый |
Использование в промышленности: для изготовления отливок |
Химический состав в % чугуна СЧ30 | ||
C | 3 – 3,2 | ![]() |
Si | 1,3 – 1,9 | |
Mn | 0,7 – 1 | |
S | до 0,12 | |
P | до 0,2 | |
Fe |
Свойства и полезная информация: |