Стали перлитного класса марки

Классификация легированных сталей

По структуре

Особое внимание в настоящей работе студенты должны обратить на классификацию сталей по структуре, получаемой после нагрева до 950 0 С и охлаждения на воздухе. В соответствии с этой классификацией легированные стали делят на пять классов: ферритный, перлитный, мартенситный, аустенитный и карбидный (ледебуритный).

Стали перлитного класса содержат любое количество углерода, но менее 2,14 % С (мало-, средне- высокоуглеродистые стали). Суммарное содержание всех легирующих элементов – не более 5 % (сумма легирующих элементов 10 %), вольфрама, кремния, ограничивающих область существования g-твердого раствора и расширяющих область a-твердого раствора. В них при их нагреве не наблюдается полиморфных превращений, а происходит рост зерна. Микроструктура легированной стали ферритного класса приведена на рисунке 4.

При введении в сталь 12 ¸ 14 % Cr ее электрохимический потенциал становится положительным, и она приобретает устойчивость против коррозии в атмосфере, морской (пресной) воде, ряде кислот, солей и щелочей. Под коррозией понимается поверхностное разруше ние металла под воздействием внешней среды. В качестве нержавеющих широко применяют стали: 08Х13, 12Х13, 12Х17, 08Х17Т, 14Х17Н2.

При повышенном содержании хрома сталь приобретает жаростойкие свойства. Под жаростойкими (окалиностойкими) сталями и сплавами понимают стали и сплавы, обладающие устойчивостью против химического разрушения поверхности в газовых средах при температурах выше 500 0 С и работающие в ненагруженном или слабонагруженном состоянии. Для приобретения жаростойких свойств при рабочей температуре

900 0 С сталь должна содержать не менее 10 % хрома, а при рабочей температуре

1100 0 С – не менее 20 ¸ 25 % хрома. Примеры сталей: 12Х17, 15Х28, 15Х25Т, 14Х17Н2.

Данные стали содержат небольшие добавки титана, никеля, ниобия, молибдена. Титан, ниобий, молибден вводят для измельчения зерна, предотвращения межкристаллитной коррозии, а никель для повышения прочности.

Большим недостатком сталей ферритного класса является то, что возникающая при перегреве (например, при сварке) крупнозернистость не может быть устранена термической обработкой, так как в этих сталях нет фазовых превращений. Крупнозернистость создает повышенную хрупкость стали (порог хладноломкости повышается и переходит в область положительных температур).

Стали аустенитного класса содержат любое количество углерода. Основные легирующие элементы этих сталей – хром, никель, марганец.

Суммарное содержание хрома и никеля около 30 % (Cr + Ni » » 30 %), содержание марганца более 10 % (Mn > 10 %). Легирующие элементы – Ni и Mn, стабилизируют аустенит и позволяют сохранить данную структуру при комнатных температурах (рис. 5).

Стали этого класса в зависимости от природы легирующих элементов и их количества, а также от характера термической обработки могут обладать самыми различными высокоценными свойствами: низким пределом текучести, умеренной прочностью, высокой пластичностью, высокой вязкостью, высоким сопротивлением истиранию, малым коэффициентом теплового расширения, немагнитностью, хорошей коррозионной стойкостью в окислительных средах и другими специальными свойствами.

Представителями аустенитных сталей являются: 12Х18Н9Т, 10Х14Г14Н4Т, 12Х17Г9АН4 (коррозионно-стойкие); 06Х25Н28МДТ (кислотостойкие); 07Х21Г7АН5, 03Х19Г10Н7АМ2 (криогенные стали – работают при низких температурах, до –296 0 С); 12Х25Н16Г7АР, 30Х24Н12СЛ (жаростойкие стали); 110Г13Л, 30Х10Г10 (износостойкие стали); 45Г17Ю3А, 55Г9Н9Х3 (маломагнитные); 4Х12Н8Г8МФБ, 08Х14Н28В3Т3ЮР, 45Х14Н14В2М (жаропрочные – обладают повышенными механическими свойствами при высоких температурах).

Стали мартенситного класса являются среднеуглеродистыми, содержат 0,25 ¸ 0,6 % С. Содержание легирующих элементов свыше 5 % (Cr >10 % или сумма легирующих элементов > 5 %).

Мартенсит – это пересыщенный твердый раствор углерода в a-железе с такой же концентрацией, как и у исходного аустенита. Мартенсит имеет тетрагональную кристаллическую решетку. Типичная микроструктура мартенсита стали имеет характерный игольчатый вид. Аустенит, который существует при нормальной температуре наряду с мартенситом, называется остаточным аустенитом (светлые поля между иглами мартенсита). Микроструктура легированной стали мартенситного класса приведена на рисунке 6.

Стали этого класса характеризуются высокой твердостью, большой хрупкостью и плохой обрабатываемостью. Из них изготавли

вают различный инструмент и другие детали, работающие в активной коррозионной среде.

Примеры сталей мартенситного класса: 40Х10С2М, Х7СМ (жаропрочные (сильхромы)); 40Х13, 30Х13 (коррозионно-стойкие); 25Х2Н4ВА (высокопрочные).

Стали карбидного (ледебуритного) классасодержат более 0,5 % углерода (0,7 ¸ 2,20 % С) и повышенное количество карбидообразующих элементов (V, W, Mo, Cr,). Весь углерод в отожженной стали находится в связанном состоянии в виде специальных карбидов.

Под влиянием легирующих элементов точки S и E диаграммы состояния Fe – Fe3C перемещаются влево, к меньшим содержаниям углерода. Поэтому ледебуритные стали имеют в структуре в литом состоянии эвтектику типа ледебурита, в которой находятся крупные

частицы карбидов (рис. 7, а). Но так как эти стали содержат углерода менее 2,0 % , то могут быть подвергнуты пластической деформации (ковке).

Ковка изменяет строение быстрорежущей стали, так как разбивает эвтектику на отдельные обособленные карбиды. В кованой отожженной стали можно наблюдать три вида карбидов: крупные обособленные первичные карбиды, более мелкие вторичные и очень мелкие эвтектоидные карбиды, входящие в основной сорбитовый фон (рис. 7, в). Количество карбидов в этих сталях достигает 30 ¸ 35 %.

Читать еще:  Магнитные свойства нержавеющей стали

Примером сталей карбидного класса могут быть быстрорежущие стали. Быстрорежущие стали обладают высокой теплостойкостью, износостойкостью, красностойкостью, работают в условиях больших скоростей трения. Высокая твердость у быстрорежущих сталей сохраняется до 500 ¸ 600 0 С.

Из этих сталей изготавливают – резцы, сверла, фрезы, метчики, плашки, развертки, зенкеры, пилы, напильники.

Примеры сталей карбидного класса: Р9, Р18, Р6М5, Р10К5Ф5.

Также к сталям карбидного (ледебуритного) класса можно отнести высокохромистые стали (11,0 ¸ 13,0 % Cr при 1,0 ¸ 2,2 %С), которые нашли широкое применение для холодных штампов и других инструментов, деформирующих металл в холодном или относительно невысоко нагретом состоянии. Эти стали обладают высокой износоустойчивостью, повышенной теплостойкостью, малой деформируемостью при термической обработке. Примеры: Х12, Х12ВМ.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома – страшная бессонница, которая потом кажется страшным сном. 8912 – | 7222 – или читать все.

95.47.253.202 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Специальные стали: виды, примеси для легирования

Для придания сталям особых качеств используют специальные примеси, которые называют легирующими элементами. Они вводятся в состав сплава в процессе выплавки при создании определенных условий. В качестве подобных веществ используют никель, хром, титан, кобальт, молибден, алюминий и другие. В результате получают хромникелевые, марганцевые, кобальтовые, титановые стали и им подобные. Для углеродных сталей применяют в основном марганец и кремний, так как именно эти компоненты в нужных пропорциях придают нужные свойства подобным сплавам.

Классификация

Основным параметрам для классификации специальных сталей является их структура. У таких материалов критические точки смещены книзу, а потому при медленном охлаждении на воздухе они могут приобретать дополнительные качества. На основании этого их подразделили на четыре класса.

Мартенситные стали

Структура таких материалов игольчатая и состоит из мартенсита, который подразумевает содержание углерода не менее 0,15 %, хрома около 11-17 % и ряда дополнительных компонентов в виде ванадия, никеля, вольфрама, молибдена. Она преобладает во многих чистых металлах и металлах, прошедших закалку. При этом в мартенситный компонент входит углеродный раствор железа в виде кристаллической решетки, которая имеет неравновесную структуру. Именно поэтому мартенситные стали обладают значительным внутренним напряжением. К таким материалам относят сплавы под марками:

  • 20Х13 – содержит 12-14 % хрома, до 1 % марганца и кремния, 0,16-0,25 % углерода (легирование никелем не проходит);
  • 10Х12НДЛ – отличается большим содержанием никеля (до 1,5 %);
  • 18Х11МНФБ – в состав входят молибден до 1,1 %, хром 11,5 %, углерод 0,8 %, никель 1 %;
  • 10Х9МФБ, 12Х11В2МФ, 13Х11Н2В2МФ и 15Х11МФ – легируются молибденом и ванадием в разных пропорциях.

Всем перечисленным материалам присуща высокая твердость, устойчивость к коррозии, жаропрочность, способность к самозакаливанию, водородоустойчивость и малая пластичность. Но при таких показателях они довольно хрупкие. В связи с этим их резка и сваривание довольно затруднительны.

Перлитные стали

Подобные специальные виды сталей относятся к низко- или среднелегированным. В их состав входит перлит и феррит. Причем оба компонента легируются хромом. В результате материал обладает высокой устойчивостью к хладноломкости.

Кроме этого, на исходные качества сплава влияет скорость охлаждения. При ее изменении перлит может приобретать различные переходные структуры. Но многое зависит от, какие легирующие примеси в стали содержаться. Некоторые могут способствовать повышению прочности, вязкости и чувствительности к термической обработке.

К перлитным сталям относятся 12МХ, 15ХМ, 12Х1МФ, 20ХМ, 25Х1МФ, 25Х2М1Ф, 18Х3МВ, 20Х3МВФ. Все материалы могут подвергаться закалке, но при разной температуре.

Аустенитные стали

Сплавы такого характера отличаются тем, что имеют наибольшее количество примесей. В результате этого они сохраняют структуру аустенита при любой скорости охлаждения. Для их упрочнения не прибегают к помощи термической обработки. Тем не менее, они могут иметь разные характеристики. При содержании хрома 12-18 % повышается устойчивость к коррозии, а при 17-25 % – хладостойкость. Также с помощью примесей можно изменять показатели по жаростойкости и жаропрочности.

В целом аустенитные стали обладают большой вязкостью, хорошей плотностью и высоким сопротивлением к механическому воздействию. Из негативных сторон стоит выделить трудность обработки резцом.

Перечень специальных сплавов этого класса довольно обширен, так как к нему относятся высоконикелевые, марганцевые, хромникелевые, хромоникельмарганцевые, метастабильные и другие сплавы.

Читать еще:  Твердость стали 65х13 по роквеллу

Карбидные стали

Сплавы карбидного класса в своем составе содержат значительное количество углерода, хрома, молибдена, вольфрама и ванадия. Все эти компоненты способствуют формированию прочной аустенитной матрицы и устойчивых карбидов. При кристаллизации из жидкого состояния, в результате которого происходит уменьшение растворения углерода в аустените, в сплаве образуется ледебурит. Он способен сохранять высокую твердость при значительных температурах, а потому широко используется для изготовления инструментов для быстрого резания различных сталей. Наиболее ярким примером таких сталей является материал, выпускаемый под маркой Р6М5. Также к этому классу относятся хромовольфрамовые, хромомолибденовые, высокохромистые сплавы.

Влияние примесей на стали

Различные примеси способны придавать металлам нужные характеристики. Так для повышения твердости используют углерод, марганец, хром, молибден. Улучшить вязкость помогают никель и ванадий. Для усадки используют марганец, кремний, алюминий. Сопротивление истиранию повышают марганец, никель, хлор. Отменную устойчивость к коррозии дают никель, хром, медь. Но важно не только правильно скомбинировать примеси. Итоговые характеристики во многом зависят и от их пропорций.

Например, специальные марганцевые стали должны содержать не менее 14 % соответствующего компонента. При отклонении этого показателя меняется структура сплава:

  • 0,4-0,6 % – мартенситная;
  • 10 % и 12 % – аустенитная;
  • 0,5 % и 3,5 % – перлитная.

При этом содержание хлора остается неизменным во всех трех случаях. В целом Мn влияет на теплопроводность, поэтому нагрев и охлаждение таких материалов следует проводить с особой осторожностью. Изделия из него получают только посредством отливки, так как резка очень затруднена. Но марганцевые стали хорошо обрабатываются под давлением и не обладают магнитными качествами.

Еще одним примером специальных сталей является хромистый сплав. Соответствующий компонент относится к карбидообразующим, поэтому в некоторые стали добавляют не более 1 % Cr. Даже при таком содержании повышение критических точек неизбежно, поэтому обязательно проводят закалку материала при высоких температурах.

1 % Cr содержится также в инструментальных сплавах. В таком количестве он повышает твердость и режущие характеристики.

В последнее время легирование сплавов проводят не одним компонентом, а сразу несколькими. В таком случае удается увеличить влияние примесей на стали и получить материалы с особыми качествами. К таким относятся:

  • быстрорежущие – не теряют твердости после нагрева;
  • износостойкие – устойчивы к механическому изнашиванию, свариваются после нагрева;
  • автоматные – дополнительно легируются свинцом, кальцием и селеной, обладают малой прочностью;
  • пружинные – отличаются хорошей эластичностью, вязкостью и упругостью;
  • строительные – характеризуются твердостью, ударной вязкостью и относительным удлинением.

Это далеко не весь перечень специальных сталей. Их существует великое множество, поэтому о составе или характеристиках того или иного материала лучше подробнее узнать у производителя.

Перлитный класс стали: описание и сварка

Перлитный класс стали – это металл, принадлежащий к низколегированному и среднелегированному типу. Чаще всего такое сырье используется в качестве конструкционной или инструментальной стали. Перлитная и ферро-перлитная структура данного материала после прохождения отжига или же после проката отлично поддается обработке любыми режущими инструментами.

Общее описание стали

Для того чтобы перлитный класс стали имел достаточно высокие механические параметры эксплуатации, необходимо провести закалку. Чаще всего для этого используется масло, а также нужно правильно провести процедуру отпуска. Благодаря такой обработке, удается повысить такой параметр, как прочность, к примеру, или износостойкость и твердость.

Стали перлитного класса выделяются минимальным содержанием легирующих элементов. Среднее содержание в мартенстиных сталях, а наибольшее количество в аустенитных.

Из-за малого количества добавок и модификаторов такие свойства, как жаростойкость, к примеру, также достаточно малы потому, что недостаточно хрома в составе. Использовать такой материал с температурой более 550-580 градусов по Цельсию нельзя.

Марки и характеристики

Разнообразие марок стали перлитного класса не слишком большое, всего их около восьми. Среди них есть 12Х1МФ (12ХМФ), 20Х1М1Ф1ТР (ЭП182) и другие. На сегодняшний день используется то название марок, которое идет первым. Маркировка, указанная в скобках – это старая, однако она все еще может кое-где встречаться. Стоит отметить, что сталь данного класса при содержании углерода до 0,35% от всей массы и с количеством легирующих элементов до 2-5% достаточно популярна. Основная причина широкого распространения – это дешевизна и относительно неплохие механические качества.

Сталь перлитного класса чаще всего используется, как конструкционный материал. Стоит также отметить, что свариваемость стали с содержанием углерода до 0,35% и легирующими элементами в пределах 3-4%, достаточно неплохая.

Сварка перлитной стали

Стоит отметить, что при сварке сталей перлитного класса наиболее выгодным будет использовать элементы, которые применяются при сварке стали с низким коэффициентом легирования. Если для этого используется ручная электрическая дуговая сварка, то лучше всего применять такие электроды, которые имеют фтористо-кальциевое покрытие. В таком случае будет обеспечена высокая устойчивость металла шва против таких дефектов, как кристаллизация, к примеру. Кроме того, прочность сварного шва также будет достаточно удовлетворительной.

Читать еще:  Монтаж трубопроводов из нержавеющей стали

Что касается режимов сварки, а также температуры, которая должна использоваться для такого материала, то наиболее выгодно использовать те варианты, которые подходят для работы с высоколегированной сталью.

К примеру, если марка перлитной стали 15ХМ или 12ХМ, то температура во время сварки должна быть примерно 400-450 градусов по Цельсию. Для работы применяется ручная электродуговая сварка. В качестве электродов чаще всего выбираются такие марки, как Э42А или проволока типа Св-08А. Что касается процедуры отпуска после сварки, то ее можно не проводить вовсе или же проводить при температуре 630-650 градусов по Цельсию.

НИЗКОЛЕГИРОВАННЫЕ ПЕРЛИТНЫЕ СТАЛИ (Хакимов А. Н.)

8.1. Назначение сталей

Низкоуглеродистые низколегированные стали перлитного класса применя­ются в различных конструкциях взамен углеродистых, обеспечивая снижение металлоемкости на 20—50 %. Оии широко используются в строительстве трубопроводов, конструкций газонефтехимических производств, судов, мостов и других сооружений, эксплуатируемых в температурном интервале от —70 до +475°С в зависимости от химического состава и структурного со­стояния, обеспеченного термообработкой.

8.2. Состав сталей

Одним из наиболее эффективных средств повышения качества низкоуглеро­дистых сталей является их упрочнение за счет легирования такими элемен­тами, как Si, Мп, и повышения дисперсности структуры посредством тер­мической или термомеханической обработки.

Содержание С в низколегированных сталях ие превышает 0,23 %. В за­висимости от легирующих элементов, суммарное содержание которых в со­ставе стали не превышает 5%, различают марганцовистые, кремнемарганцо­вистые, хромокремнемарганцовистые и другие стали, представленные в табл. 8.1. По содержанию S и Р эти стали можно отнести к качественным

ХИМИЧЕСКИЙ СОСТАВ И МЕХАНИЧЕСКИЕ СВОЙСТВА НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ

Содержание химических элементов,

Толщина проката, мм

Рис 8 I Определение температуры подогрева в зависимости от Сэкв и толщины свариваемого проката <31

Для определения температуры подогрева стали с целью предотвращения образования холодных трещин в зависимости от содержания в ней химических элементов и толщины проката можно воспользоваться графи­ками, приведенными на рис. 8.1

[3] . Значения Сэкв, отложенные по оси абсцисс, определяют как:

Сэкв = с + Мп/6 + Si/5 + Сг/6 +

+ Ni/12+Mo/4 + V/5 + Cu/7+ Р/2.

Здесь символы обозначают со­держание соответствующих хи­мических элементов в процентах.

Предельное их содержание не должно превышать 0,5 % С;

1,6% Мп; 1 % Сг; 3,5 % N1;

0,6 % Мо; 1 % Си. Как видно, не­обходимая температура подо­грева возрастает с увеличением степени легированности стали и толщины свариваемого проката.

Другая методическая последовательность, рассмотренная в работе [3], позволяет дифференцированно определять условия подогрева для корневых и заполняющих швов в соответствии с номограммой, представленной на рис. 8.2.

Методика пользования номограммой на примере сварки кор­невого шва стали толщиной 30 мм при значении тока 250 А, напряжении дуги 25 В, скорости сварки 25 см/мин представ­лена ниже:

Восстанавливаем перпендикуляр из точки а, соответствующей /=250 А, до пересечения с прямой, соответствующей напряжению 25 В, и получаем точку б в квадранте I. Затем проводим горизонталь б — в до пересечения с прямой, соответствующей скорости сварки 25 см/мин, в квадранте //. После этого опускаем перпендикуляр из точки в до пересечения с кривой, соответствующей толщине проката 30 мм, и получаем точку г; затем про­водим горизонталь г — д до пересечения с прямой 1, соответствующей усло­виям сварки корневого шва в квадранте IV, восстанавливаем перпендикуляр из точки бив точке е определяем температуру подогрева, соответствую­щую 150 °С

Рис. 8.2. Номограмма для определения режимов сварки и предварительного подогрева сталей с содержанием Сэкв

СВАРКА И СВАРИВАЕМЫЕ МАТЕРИАЛЫ

ПОРИСТЫЕ МАТЕРИАЛЫ НА МЕТАЛЛИЧЕСКОЙ ОСНОВЕ (Третьяков А. Ф.)

39.1. Классификация пористых материалов Пористые материалы (ПМ) на металлической основе применяются в каче­стве фильтроэлемеитов, смесителей, газовых линз, глушителей шума и др ПМ классифицируются по назначению, химическому составу и типу струк­турообразующих …

КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ С МЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ (Чернышова Т. А.)

38.1. Классификация Композиционные материалы — это материалы, армированные наполнителями, определенным образом расположенными в матрице Наполнителями чаще всего являются вещества с высокой энергией межатомных связей, высо­копрочные и высокомодульиые, однако в сочетании …

ПЛАСТМАССЫ (Зайцев К. И.)

37.1. Состав и свойства 37.1.1. Получение пластмасс Пластмассы — это материалы, полученные на основе синтетических нли ес­тественных полимеров (смол). Синтезируются полимеры путем полимериза­ции или поликондеисацни мономеров в присутствии катализаторов при …

Ссылка на основную публикацию
Adblock
detector