Класс прочности болтов из нержавеющей стали
Химический состав нержавеющей стали и соответствие стандартов. Сталь нержавеющая а1
Классы прочности болтов, винтов, шпилек и гаек из нержавеющих аустенитных сталей
Крепёжные узлы для эксплуатации в агрессивных условиях, благоприятствующих возникновению коррозионных процессов, требуют применения изделий из специальных коррозионностойких сплавов. Для этого наилучшим образом подходят нержавеющие стали А2 и А4 по ГОСТ Р ИСО 3506
Их уникальная коррозионная стойкость объясняется аустенитной структурой сплава, которая при отпуске сохраняется благодаря малому содержанию углерода (С≤0,1 %) на фоне высокого содержания легирующих элементов. Такие стали с большим содержанием хрома (Cr≥15 %) дополнительно легируют никелем (Ni≥8 %) в целях повышения их пластичности. В результате чего по своей природе свойства аустенитных сплавов существенно выделяются на фоне аналогов из чёрных металлов.
Поэтому класс прочности крепёжных изделий А2 или А4 по ГОСТ Р ИСО 3506-1-2009 обозначается цифрами 50, 70 или 80, что очевидно отличается от обозначения болтов, шпилек и гаек из углеродистых сталей: 5.6, 6.8, 8.8 и т. п.
Для сравнения можно привести наиболее распространенные классы прочности для болтов согласно действующим стандартам:
При сравнении механических свойств очевидно, что аустенитные стали более «мягкие» – они отличаются меньшим пределом текучести.
В частности, для болтов, винтов и шпилек с равным пределом прочности Rm=800 МПа:
Зная класс прочности, нетрудно посчитать и напряжения при растяжении для болтокомплектов из нержавеющей стали. Для этого в ГОСТ Р ИСО 3506 приводится определение площади расчётного сечения болта в приложении А, а для стандартных размеров крупной и мелкой метрической резьбы номинальные значения площади указаны в Табл.А.1.
Так, например, расчётная нагрузка на пределе текучести для болтов М10 А2-70 по ГОСТ Р ИСО 3506-1 составит:
Поэтому при выборе нержавеющего крепежа с метрической резьбой всё-таки необходимо учитывать его класс прочности: 50, 70 или 80, регламентированный ГОСТ Р ИСО 3506-1 и ГОСТ Р ИСО 3506-2.
Описание нержавеющих сталей А2 и А4. Характеристики, аналоги, применение для изготовления крепежа
А2 и А4 – это сокращенное название марок нержавеющих аустенитных (Austenitic) сталей. Аустенитная сталь обладает рядом замечательных свойств, которые обеспечили ей очень широкое применение в народном хозяйстве. Стали А2 и А4 не токсичны, устойчивы к коррозии. Они хорошо подвергаются механической и термической обработке, а также сварке. Крепежные изделия, изготовленные из сталей А2 и А4, практически не магнитны, прочны и долговечны. Они отлично сохраняют свои свойства при высоких и низких температурах.
Сталь А2 имеет отечественный аналог – нержавеющая сталь марки 08Х18Н10 и зарубежный аналог – марки AISI 304 (в США). Сборочные единицы, детали и крепежные элементы из стали А2 используются в нефтедобывающей, пищевой, химической и газодобывающей промышленности; в приборостроении и судостроении; в строительстве при монтаже вентилируемых фасадов и витражных конструкций, а также при изготовлении насосной техники. Изготовленные из стали А2 изделия сохраняют свои прочностные свойства в большом диапазоне температур: от низких (-200 градусов Цельсия) до высоких (+425 градусов Цельсия).
Сталь А4 по своим характеристикам похожа на А2, но сфера применения ее значительно расширилась за счет добавления 2-3% молибдена, что способствует более высокой ее стойкости к коррозии в средах, содержащих кислоты, соли и хлор. Изделия из нержавейки марки А4 сохраняют свои прочностные свойства при низких (до -60 градусов Цельсия) и при высоких (до +450 градусов Цельсия) температурах. Эти изделия применяют: в химической промышленности, где они подвержены воздействию агрессивных сред; в судостроении (элементы крепежа и такелажные изделия) для защиты от разрушающего воздействия со стороны морской воды; в бассейнах, содержащих хлорированную воду. Нержавейка А4, как и А2, также имеет отечественный аналог – сталь типа 10Х17Н13М2 и зарубежный аналог – AISI 316 (в США).
Сталь А2 и сталь А4 отлично подходят для изготовления нержавеющего крепежа повышенного класса точности А, который применяются для создания прочных и долговечных ответственных соединений. Болты и гайки этого класса изготавливаются, например, на токарных станках с числовым программным управлением (ЧПУ). Разница диаметров резьбы, наружной для болта и внутренней для гайки, после чистовой обработки на станке не превышает величины 0,25…0,3 миллиметров. Однако цена изготовленных из нержавейки деталей будет значительно выше, чем у деталей из обычной углеродистой стали. Класс прочности для болтов, изготовленных из нержавеющей аустенитной стали марки А2 и стали марки А4, равен 50, 70 или 80.
ИНПО: Техническая библиотека
Химический состав нержавеющей стали и соответствие стандартов
К нержавеющим сталям относят группу коррозионностойких сталей с содержанием минимум 10.5 % хрома и низким содержанием углерода. Для примера приведем простую таблицу различных сплавов с железом.
Чугун | Fe + C > 2% |
Углеродистая сталь | Fe + C 5% |
Нержавеющая сталь | Fe + C 10.5% |
Кроме Хрома как “основной нержавеющей составляющей” в составе нержавеющей стали могут присутствовать Никель, Молибден, Титан, Ниобий, Сера, Фосфор и другие легирующие элементы определяющие свойства стали.
Таблица соответствий основных марок нержавеющих сталей и химический состав
А2, А4 — Характеристика крепежных изделий из нержавеющих сталей
Нержавеющие стали А2, А4: структура, механические свойства, химический состав. Крепеж из стали А2, А4 (нержавеющие болты, винты, гайки, шайбы, шпильки и т. д. ): механические свойства, значения моментов затяжки и усилий предварительной затяжки.
Характеристики нержавеющих сталей
Аустенитные стали содержат 15-26% хрома и 5-25% никеля, которые увеличивают сопротивление коррозии и практически не магнитны.
Именно аустенитные хромникелевые стали обнаруживают особенно хорошие сочетание обрабатываемости, механических свойств и коррозионной стойкости. Эта группа сталей наиболее широко используется в промышленности и в производстве элементов крепежа: нержавеющих болтов, нержавеющих гаек, нержавеющих шпилек, нержавеющих винтов, а также нержавеющих шайб.
Стали аустенитной группы обозначаются начальной буквой «A» с дополнительным номером, который указывает на химический состав и применяемость в пределах этой группы:
Аустенитная структура
Группа стали | Номер материала | Краткое обозначение | Номер по AISI |
---|---|---|---|
А1 | 1.4305 | X 10 CrNiS 18-9 | AISI 303 |
А2 | 1.4301 / 1.4303 | X 5 CrNi 18-10 / X 4 CrNi 18-12 | AISI 304 / AISI 305 |
А3 | 1.4541 | X 6 CrNiTi 18-10 | AISI 321 |
А4 | 1.4401 / 1.4404 | X 5 CrNiMo 18-10 / X 2 CrNiMo 18-10 | AISI 316 / AISI 316 L |
А5 | 1.4571 | X 6 CrNiMoTi 17-12-2 | AISI 316 TI |
Сталь A2 (AISI 304 = 1.4301 = 08Х18Н10) — нетоксичная, немагнитная, незакаливаемая, устойчивая к коррозии сталь. Легко поддается сварке и не становится при этом хрупкой. Может проявлять магнитные свойства в результате механической обработки (шайбы и некоторые виды шурупов). Это наиболее распространенная группа нержавеющих сталей. Ближайшие аналоги — 08Х18Н10 ГОСТ 5632, AISI 304 и AISI 304L (с пониженным содержанием углерода).
Крепеж и изделия из стали A2 подходят для использования в общестроительных работах (например, при монтаже вентилируемых фасадов, витражных конструкций из алюминия), при изготовлении ограждений, насосной техники, приборостроения из нерж. стали для нефтегазодобывающей, пищевой, химической промышленности, в судостроении. Сохраняет прочностные свойства при нагреве до 425°C, а при низких температурах до -200°C.
Сталь A4 (AISI 316 = 1.4401 = 10Х17Н13М2) — отличается от стали А2 добавлением 2-3% молибдена. Это значительно увеличивает ее способность сопротивляться коррозии и воздействию кислот. Сталь А4 имеет более высокие антимагнитные характеристики и абсолютно не магнитна. Ближайшие аналоги — 10Х17Н13М12 ГОСТ 5632, AISI 316 и AISI 316L (с низким содержанием углерода).
Крепеж и такелажные изделия из стали A4 рекомендуются для использования в судостроении. Крепеж и изделия из стали A4 подходят для использования в кислотах и средах содержащих хлор (например, в бассейнах и соленой воде). Может использоваться при температурах от -60 до 450°С.
Классы прочности
Все аустенитные стали (от «А1» до «А5») подразделяются на три класса прочности независимо от марки. Наименьшую прочность имеют стали в отожженном состоянии (класс прочности 50).
Поскольку аустенитные стали не упрочняются закалкой, наибольшую прочность они имеют в холоднодеформированном состоянии (классы прочности 70 и 80). Наиболее широко используется крепеж из сталей А2-70 и А4-80.
Классы прочности нержавеющего крепежа
Механические характеристики болтов, винтов, шпилек из нержавеющих сталей регламентируются ГОСТ Р ИСО 3506-1-2009. Настоящий стандарт классифицирует нержавеющие крепежные изделия по классам прочности, которые принято обозначать двумя цифрами: 50, 70, 80 и писать через дефис с маркой стали: А1-50, А2-70, А4-80. Что означают эти цифры? – это 1/10 часть от минимального предела прочности на растяжение.
Для производства нержавеющего крепежа чаще всего применяются марки стали А2 (пищевая) или А4 (кислотостойкая), обозначенные так в системе EN ISO, или их приближенные аналоги AISI 304 (12X18H10) и AISI 316 (03Х17Н14М2). Крепежные изделия из коррозионно-стойких сплавов аустенитной группы не упрочняются закаливанием в отличие от изделий из черных металлов. Их главным легирующим компонентом являются хром и никель, а также молибден (для марки А4). Процентное содержание этих и других добавок определяет степень коррозионной стойкости крепежа, максимальные рабочие нагрузки и другие свойства.
Примеры обозначения прочности крепежа из нержавейки:
А2-50 – мягкая сталь с пределом прочности на разрыв минимум 500 Н/мм² (500МПа).
А2-70 – холоднодеформированная сталь с пределом прочности на разрыв минимум 700 Н/мм² (700МПа).
А4-80 – высокопрочный сплав с пределом прочности на разрыв минимум 800 Н/мм² (800МПа).
Маркировка наносится на головку болтов (винтов) рядом с клеймом изготовителя, а шпильки маркируются на гладкой части или на торце, если шпилька полнорезьбовая. Иногда на торец шпильки наносится цветовая кодировка марки сплава (для А2 – зеленая, для А4 – красная). Если маркировка класса прочности отсутствует, то в расчет принимается среднее значение – 70.
Для сравнения механических свойств болтов из нержавеющей и углеродистой стали обратимся к таблице:
Аустенитные А2, А4 | |||||||
Класс прочности | 5.6 | 6.8 | 8.8 | 10.9 | 50 | 70 | 80 |
Предел прочности, Н/мм² | 500 | 600 | 800 | 1040 | 500 | 700 | 800 |
Предел текучести, Н/мм² | 300 | 480 | 640 | 940 | 210 | 450 | 600 |
Из таблицы видно, что при близких значениях временного сопротивления, предел текучести у аустенитных сплавов меньше, поэтому они больше подвержены пластической деформации. Это свойство позволяет болтам или шпилькам не ломаться при превышении допустимого момента затяжки или при боковых изгибающих нагрузках. В худшем случае превышение усилия может привести к срыву резьбы. В то время как углеродистые стали более хрупкие и запредельные нагрузки могут привести к излому резьбового крепежа.
Расчет нагрузок для нержавеющих болтов
Зная прочностные характеристики аустенитных сплавов, не трудно рассчитать максимальную нагрузку на болты по формуле. Для примера взят болт М12, А2-70.
Np0.2 = As х Rp0.2 = 84.3 х 450 = 37935 Н, где:
As – расчетная площадь сечения М12 (см. ГОСТ Р ИСО 3506 табл. А.1.)
Rp0.2 – предел текучести
Для определения расчетной рабочей нагрузки полученное значение необходимо разделить как минимум на 20: 37935 / 20 = 1896 кг, а для большей уверенности в безопасности болтокомплекта лучше разделить на 30.
Класс прочности – важнейшая характеристика нержавеющей стали, прописанная в национальном стандарте ГОСТ Р ИСО 3506-1-2009, которую следует учитывать при расчете нагрузки на болтовое или шпилечное соединение.
Класс прочности болтов из нержавеющей стали
Для изделий из углеродистой стали, класс прочности обозначают двумя цифрами через точку.
Пример: 4.6, 8.8, 10.9, 12.9.
Первая цифра обозначает 1/100 номинальной величины предела прочности на разрыв, измеренную в МПа. В случае 8.8 первая 8 обозначает 8 х 100 = 800 МПа = 800 Н/мм2 = 80 кгс/ мм2
Вторая цифра – это отношение предела текучести к пределу прочности, умноженному на 10. Из пары цифр можно узнать предел текучести материала 8 х 8 х 10 = 640 Н/мм2.
Значение предела текучести имеет важное практическое значение, поскольку это и есть максимальная рабочая нагрузка болта.
Поясним значения некоторых терминов:
Предел прочности на разрыв – величина нагрузки, при превышении которой происходит разрушение – “наибольшее разрушающее напряжение”.
Предел текучести – величина нагрузки, при превышении которой наступает невосстанавливаемая деформация или изгиб. Например, попробуйте согнуть “от руки” обычную стальную вилку или кусок металлической проволоки. Как только она начнет деформироваться, это будет означать, что вы превысили предел текучести ee материала или предел упругости при изгибе. Поскольку вилка не сломалась, а только погнулась, то предел ее прочности больше предела текучести. Напротив, нож скорей всего сломается при определенном усилии. Его предел прочности равен пределу текучести. В этом случае говорят, что ножи “хрупкие”.
Японские самурайские мечи – пример классического сочетания материалов с различными характеристиками прочности. Некоторые их виды снаружи сделаны из твердой закаленной стали, а внутри выполнены из упругой, позволяющей мечу не ломаться при боковых изгибающих нагрузках. Такое строение называется “кобу-си” или, иначе, “пол-кулака”, то есть “горсть” и при соответствующей длине катаны является очень эффективным решением для боевого клинка.
Другой практический пример: закручиваем гайку, болт удлиняется и после некоторого усилия начинает “течь” – мы превысили предел текучести. В худшем случае может произойти срыв резьбы на болте или гайке. Тогда говорят – резьба “срезалась”.
Вот тут есть небольшой ролик с испытанием болтов на разрыв, наглядно демонстрирующий протекающие процессы.
Процент удлинения – это средняя величина удлинения деформируемой детали до её поломки или разрыва. В бытовом плане некоторые виды некачественных болтов называют “пластилиновыми” подразумевая именно термин процент удлинения. Технический термин – “относительное удлинение” показывает относительное (в процентах) приращение длины образца после разрыва к его первоначальной длине.
Твёрдость по Бринеллю – величина, характеризующая твeрдость материала.
Твердость – способность металла противостоять проникновению в него другого, более твердого тела. Метод Бpиннеля применяется для измерения твердости сырых или слабо закалённых металлов.
Для крепежа из нержавеющей стали также наносится маркировка на головке болта. Класс стали – А2 или А4 и предел прочности – 50, 70, 80, например: А2-70, А4-80.
На шпильки с резьбой наносится цветовая маркировка с торца: для A2 – зеленым цветом, для A4 – красным . Значение для предела текучести не указывается.
Пример: Для A4-80 Предел прочности = 80 х 10 = 800 Н/мм2.
Значение 70 – является стандартным пределом прочности нержавеющего крепежа и принимается в расчет пока явно не указано 50 или 80.
Предел текучести для нержавеющих болтов и гаек является справочным значением и составляет около 250 Н/мм2 для A2-70 и около 300 Н/мм2 для A4-80. Относительное удлинение при этом составляет около 40%, т.е. нержавейка хорошо “тянется” после превышения предела текучести, прежде чем наступит необратимая деформация. В сравнении с углеродистыми сталями относительное удлинение для ST-8.8 составляет 12%, а для ST-4.6 соответственно 25%
Отечественный ГОСТ 1759.4-87 МЕХАНИЧЕСКИЕ СВОЙСТВА И МЕТОДЫ ИСПЫТАНИЙ не уделяет внимания вообще расчету нагрузок для нержавеющего крепежа, а также не указывает явно, какой размер резьбы d, d2 или d3 принимается в расчет. В результате сравнения значений из ГОСТа и таблицы размеров метрической резьбы из справочника фирмы FABORY , становится ясно, что это d2 – pitch diameter.
При расчетах болтового соединения для заданной нагрузки используют коэффициент 1/2, а лучше 1/3 от предела текучести. Иногда его называют Коэффициентом запаса, соответственно два или три.
Примеры расчета нагрузки по классу прочности материала и резьбе:
Болт М12 с классом прочности 8.8 имеет размер d2 = 10,7мм и расчетную площадь сечения 89,87мм2.
Тогда максимальная нагрузка составит: ОКРУГЛ( (8*8*10)*89,87 ;0) = 57520 Ньютон, а расчетная рабочая нагрузка – 57520 х 0,5 / 10 = приблизительно 2,87 тонны.
Для болта M12 из нержавеющей стали A2-70 та же расчетная рабочая нагрузка не должна превышать половину значения предела текучести и составит 250 x 89,87 / 20 = приблизительно 1,12 тонны, а для M12 A4-80 – 1,34 тонны.
В сокращенном виде этот материал изложен на последней странице крепежного каталога.
Дополнительные таблицы, сделанные еще перед выходом статьи в 2008 году и добавленные 21.09.2011 спустя почти четыре года. Добавлены сведения для нержавейки A2-50 и высокопрочных ST-10.9. Коэффициент запаса равен двум. Можно перестраховаться и смело делить на тридцать нагрузку в Ньютонах. Кстати, на такелаже именно так и делают, только делят нагрузку на сорок, т.е. принимают запас равным четырем.
- PDF ROSTFREI.ru-FABORY SCREW THREADS.pdf
- PDF ROSTFREI.ru-ГОСТ 1759.4-87 МЕХ.СВОЙСТВА И ИСПЫТАНИЯ.pdf