Химическое фосфатирование стали
Фосфатирование
Фосфатирование поверхности
Сегодня для защиты металлических изделий от образования коррозийного налета применяется большое количество способов. Все они направлены на то, чтобы создать на поверхности тонкий защитный слой, который будет длительное время защищать от процесса окисления металла. Обработка металлов фосфатирующими растворами является эффективным методом борьбы с образованием ржавчины.
Для проведения процедуры фосфатирования необходимо изначально провести подготовку металлов или металлических изделий. Для того чтобы вещества раствора лучше адгезировались нужно тщательно обезжирить и промыть поверхность, которая будет подвергаться обработке. Только в этом случае покрытие будет качественным и продержится достаточно длительное время. При необходимости металлический материал перед процедурой можно отшкурить при помощи наждачной бумаги.
Фосфатирование металла
Фосфатирование представляет собой один из самых действенных методов борьбы с ржавчиной. Данный способ обработки
металлических покрытий относится к разряду дополнительных. Этот метод основан на том, что металлы при погружении в фосфатирующее вещество покрываются его компонентами. Они оседают на поверхности и образуют дополнительную защитную пленку.
Процедура фостфатирования металлических покрытий позволяет наилучшим образом подготовить их к нанесению лакокрасочного покрытия. Данная мера позволяет металлу реже подвергаться образованию коррозии. Данный метод походит для дополнительной обработки и черный и цветных типов металлов.
Фосфатирование металлов в промышленных масштабах осуществляется путем распыления или погружения изделий в вещество.
Оно изготовлено из:
Данные элементы образуют единое вещество, которое при взаимодействии другими металлами адгезируется с ними и обеспечивает надежную защиту от процесса окисления и образования коррозии.
На многочисленных промышленных предприятиях данный метод подразумевает качественное нанесение раствора на металлические изделия.
Делается это несколькими способами:
- распыление,
- нанесение валиком,
- нанесение кистью.
Процесс фосфатирования не занимает много времени. После проведения такой процедуры необходимо дать изделиям из обработанных металлов просохнуть.
Фосфатирование стали
На сегодняшний день данная процедура обработки доступна для различных элементов. Фосфатирование стали подразумевает нанесение на поверхность изделия из данного материала фосфатирующего вещества. Благодаря этому на поверхности металла образуется дополнительная защитная пленка, которая практически никак внешне не заметна.
Фосфатирование воды
Для обработки барабанный котлов применяется фосфатирование воды. В этом случае вода с растворенными в ней фосфатами вводится в барабан.
Важно: У данного метода есть большое количество противников Не рекомендуется его использовать, когда котел нагревается.
Таблица 1: Пригодность фосфатирования как основы для нанесения лаковых покрытий на различные металлические поверхности
Тип фосфатирования | Обрабатываемые металлические поверхности | ||
---|---|---|---|
Сталь | Оцинкованная сталь | Алюминий | |
Кислое щелочное фосфатирование | + | + | + |
Цинковое фосфатирование | + | + | + |
Низкоцинковое фосфатирование | + | + | + |
Mn модифицированное низкоцинковое фосфатирование | + | + | + |
Никелевое фосфатирование | o | + | – |
Цинко-кальциевое фосфатирование | + | o | – |
Пояснения: + – пригодно; o – условно пригодно; – -непригодно
Виды фосфатирования
Сегодня имеется большое количество видов фосфатирования.
Из них выделяются следующие:
Химическое фосфатирование
Данная процедура применяется по отношению к тем металлам, которые обладают не прочной структурой. Среди них выделяются: алюминий, низколегированная сталь и магний, цинк. К одному из подтипов химического фосфатирования относится аморфоное фосфатирование. Для поведения данной процедуры используются фосфаты железа.
Черное фосфатирование
Данный процесс обработки металлических изделий относится к разряду декоративных. Он предполагает образование на их поверхности пленки черного цвета. Она является достаточно плотной и придает любому изделию дополнительную прочность.
Цинковое фосфатирование
Процесс обработки металлов цинковыми фосфатами и сплавами данного металла является одним из самых действенных методов укрепления структуры любого металла. В результате покрытие обладает оптимальной толщиной и приятным серебристым оттенком.
Преимущества фосфатирования
Фосфатирование используется в большинстве случаев для придания металлическим поверхностям дополнительной защиты от образования коррозийного налета. Благодаря фосфатирвоанию металлы приобретают следующие положительные качества:
- твердость. Металлы становятся более устойчивыми к появлению внешних повреждений.
- устойчивость к влиянию электрического тока.
- улучшаются сроки эксплуатации тех или иных металлических изделий, которые были обработаны методом фосфатирования.
- прочность покрытия. Металлы покрываются дополнительной защитной пленкой, которая придает им особые свойства.
Процедура фосфатирования на производственных предприятиях не используется так часто, как анодирование, например.
Статьи по теме
Нейтрализатор ржавчины
Сегодня для защиты металлов от образования коррозии создано большое количество средств. Одни из направлены на то, чтобы предотвратить образование на металлической поверхности коррозийного налета. Другие же используются для его устранения.
Удаление ржавчины
Сегодня с образованием ржавчины на металлических поверхностях сталкиваются многие люди. Она образуется под воздействием окружающей среды. Процесс образования ржавого налета может иметь разную продолжительность.
Преобразователь ржавчины – какой лучше?
Сегодня производится большое количество смесей для обработки металлических поверхностей. Есть специальные составы, которые помогают бороться с образованием налета коррозии. Они получили названием преобразователи ржавчины.
Химическое фосфатное оксидирование: технология, свойства, применение
Химическое фосфатное оксидирование предназначено для предотвращения коррозии на чёрных и цветных металлах. Оно не только спасает металлические изделия от разрушения, но и значительно увеличивает такие немаловажные параметры, как:
- твёрдость;
- износостойкость;
- электроизоляционные свойства.
Этим методом покрытия обрабатывают следующие металлы:
- чугун;
- низколегированные стали;
- углеродистые стали;
- медь и её сплавы;
- алюминий;
- кадмий;
- цинк;
- магний;
- никель;
- титан.
Технология покрытия стала особенно популярной в сфере автомобилестроения. Сначала металл обрабатывается методом оксидирования. Затем происходит нанесение эмалей.
Что из себя представляет химическое оксидирование?
Оксидирование металла — создание на поверхности металлаплотной оксидной плёнки. Она препятствует дальнейшему окислению (коррозии) изделия.
Химическое фосфатное оксидирование (фосфатирование) — возникновение фосфатной плёнки после обработки металла химическим способом.
Как происходит фосфатирование?
В основу процесса фосфатирования входят смеси солей марганца, железа и фосфорной кислоты. Поэтому препарат, содержащий все эти элементы, получил сокращённое название Мажеф.
Металлические изделия помещаются в специальную ванну с разогретой смесью Мажеф на 1-1,5 часа. В конечном итоге на деталях образуется слой разной толщины: от 2 до 50 мкм. Слой в несколько мкм используется для основы под покрытие лакокрасочными материалами. Если же на изделии слой из толстой плёнки — то он выступает как самостоятельное покрытие и в дальнейшей обработке не нуждается. Такое покрытие выдержит низкие температуры, а также недолгое влияние температуры до 500С.
Цвет фосфатного покрытия зависят от обрабатываемой поверхности:
- Светло-серый образуется на малоуглеродистых сталях и цветных металлах. Важно, чтобы перед этим изделия проходили пескоструйную обработку в растворах с повышенном содержанием уровня кислотности.
- Тёмно-серый оттенок получается на чугунных изделиях или деталях из высоколегированной стали. Перед фосфатированием металл подвергается травлению с высокой концентрацией ортофосфорной кислоты.
- Зеленоватый цвет характерен для покрытия на стали, в состав которой входят никель и хром.
Свойства фосфатного покрытия
- Так как фосфатное покрытие достаточно легко разрушается под действием щелочей и кислот, оно редко используется как самостоятельное. В основном, фосфатирование является основой для лакокрасочного или смазочного покрытий. Также его применяют перед пассивированием.
- Фосфатное покрытие не является чувствительным к кислороду, воздуху, маслам, керосину. Расплавленными металлами не смачивается.
- Слой способен выдержать температуру от – 75 °С до 500 °С. При долгом воздействии самой низкой или самой высокой температуры покрытие постепенно будет разрушаться.
- Покрытие обладает хорошим электросопротивлением до 500 В. Слой твёрже, чем латунь или медь, но мягче, чем сталь.
- Фосфатный слой хорошо взаимодействует с маслами, смолами, красками благодаря адгезии.
- Фосфатирование не меняет размера изделия.
Применение
Фосфатное покрытие применяется в сферах автомобилестроения, судостроения, сельского хозяйства, металлургической и электронной промышленностях, машиностроении. Химическое фосфатное оксидирование широко используют для основы под лакокрасочные покрытия, а также для защиты металлов от окисления. Ещё одним преимуществом этого метода является его низкая стоимость.
Химическое фосфатирование
Фосфатирование представляет собой процесс обработки металлических изделий растворами кислых фосфорнокислых солей с образованием на поверхности защитной солевой пленки из нерастворимых фосфатов. Фосфатная пленка выполняет свое основное назначение – защиту от коррозии только в сочетании с лакокрасочными покрытиями или масляной пленкой, что объясняется хорошими адгезионными свойствами, сама по себе она пориста.
Благодаря хорошей адгезии фосфатирование широко применяют для грунтования под лакокрасочные покрытия в различных областях машиностроения – автомобильной, судостроительной, сельскохозяйственной и др. Иногда фосфатированию подвергают различные крепежные детали с последующим пропитыванием смазочными веществами, поскольку фосфатирование не приводит к изменению размеров.
Фосфатные покрытия являются одним из видов конверсионных, т. е. получаемых в результате взаимодействия металла с рабочим раствором. Они представляют собой кристаллическую пленку труднорастворимых в воде фосфорнокислых солей железа и марганца или железа и цинка. В зависимости от состояния поверхности металла и условий фосфатирования формируются пленки толщиной от 1 до 100 мкм, мелко- или крупнозернистые, обладающие рядом весьма ценных свойств. Они устойчивы в атмосферных условиях, в смазочных маслах и органических растворителях, но разрушаются в кислотах и щелочах. Такие покрытия имеют высокое электросопротивление и выдерживают напряжение до 250 В, а после пропитки изоляционными маслами – до 1000 В. Это позволяет применять фосфатирование для получения изоляционного слоя на трансформаторных, роторных, статорных пластинах. Твердость фосфатной пленки ниже, чем стали, но несколько превышает твердость меди. Она хрупка, неустойчива против фрикционного износа, не оказывает влияния на механические и электромагнитные свойства металла. Благодаря значительной пористости фосфатные пленки хорошо удерживают масла, консистентные смазки, лаки.
Фосфатные покрытия не смачиваются расплавленным металлом, и это свойство используется в технологии металлургического производства. Слой фосфатов, пропитанный смазками, благоприятно сказывается на процессах волочения проволоки, протяжки труб, штамповке.
Пропитка минеральными маслами, консистентными смазками, в особенности если они содержат добавки ингибиторов, значительно улучшает защитную способность покрытий. Наиболее широкое применение фосфатные пленки находят в качестве грунта под лакокрасочные покрытия. Они способствуют лучшей адгезии лакокрасочного слоя к поверхности металла и в таком комбинированном варианте существенно повышают стойкость изделий против коррозии даже в жестких климатических условиях.
Фосфатированию можно подвергать углеродистые и низколегированные стали, чугун, некоторые цветные и легкие металлы. Высоколегированные стали фосфатируются с трудом, и на них образуются пленки более низкого качества, чем на углеродистых сталях. Фосфатные пленки на алюминии и магнии являются менее надежной защитой от коррозии, чем пленки, полученные электрохимическим оксидированием.
Формирование фосфатной пленки начинается с электрохимического растворения металла, причем на анодных участках поверхности металл в ионном состоянии переходит в раствор, на катодных участках происходит выделение водорода:
Результатом этой реакции является понижение содержания НзРО4 в растворе, что приводит к уменьшению концентрации ионов водорода и образованию вторичных и третичных солей:
Образующиеся однозамещенные фосфаты легко растворимы в воде, двухзамещенные трудно растворимы, а трехзамещенные практически не растворяются. Получающаяся при реакциях свободная фосфорная кислота повышает концентрацию ионов водорода в растворе, что способствует дальнейшему ходу процесса. Выделившийся на поверхности металла осадок нерастворимых фосфатов образует с ним прочную кристаллохимическую связь.
Для предотвращения диссоциации однозамещенного фосфата и создания благоприятных условий для образования нерастворимого трехзамещенного фосфата раствор должен содержать некоторый избыток фосфорной кислоты. Одновременно следует учитывать, что чрезмерный избыток кислоты может сдвинуть реакцию в нежелательную сторону. Образование однозамещенных солей затрудняет формирование сплошной пленки или вообще препятствует ее возникновению. Поэтому кислотность раствора играет большую роль в процессе получения фосфатных покрытий.
Исследования процесса фосфатирования стали показали, что формирующаяся пленка состоит как бы из двух слоев: 1) внутреннего, барьерного, небольшой толщины, гладкого, эластичного, весьма пористого, непосредственно прилегающего к металлу; 2) наружного, имеющего кристаллическое строение, хрупкого, состоящего из вторичных и третичных фосфатов и определяющего основные положительные свойства пленки. По мере роста внешнего слоя поверхность металла изолируется от воздействия раствора, и скорость процесса постепенно уменьшается.
Толщина и структура фосфатных пленок зависят от состава обрабатываемого металла, условий фосфатирования и способа предварительной обработки поверхности деталей. В обычных растворах на полированной поверхности стали образуется мелкокристаллическая пленка толщиной 1-4 мкм, длительность процесса составляет около 30 мин. При формировании пленки крупнокристаллической структуры обеспечивается более продолжительный доступ раствора к металлу, длительность процесса увеличивается до 60-90 мин, толщина пленки достигает 10-12 мкм. Мелкокристаллические пленки вследствие их меньшей пористости характеризуются более высокой защитной способностью в коррозионных условиях, чем крупнокристаллические пленки большой толщины. Травление стали в кислотах способствует образованию крупнокристаллической фосфатной пленки, а гидроабразивная обработка – мелкокристаллической. Соответственно изменяется и продолжительность процесса.
Основой многих растворов для фосфатирования является препарат мажеф, в состав которого входят соли Мn(Н2РО4)2•Н2О, MnHPО4, Fe(H2PO4)2. В таком растворе процесс фосфатирования особенно эффективно протекает при 90-100 °С. Его можно ускорить введением специальных добавок окислителей, из которых наибольшее применение нашли азотнокислые и азотистокислые соли цинка и бария. Эти добавки являются деполяризаторами, способствующими уменьшению выделения водорода. Последнее обстоятельство следует учитывать при обработке тонкостенных деталей и пружин, так как в растворах, содержащих окислители, наводороживание стали происходит в меньшей степени, чем в обычных растворах мажефа. Защитная способность фосфатных пленок, сформированных в таких растворах, относительно ниже, чем в отсутствии окислителей.
Температуру раствора при фосфатировании можно значительно понизить увеличением концентрации свободной фосфорной кислоты и введением активирующих добавок, в качестве которых применяют нитраты, нитриты или фториды. Толщина пленок, формирующихся в этих растворах, составляет 4-6 мкм, качество их несколько хуже, чем пленок, сформированных при повышенной температуре. Так называемое холодное фосфатирование, т. е. проведение процесса при комнатной температуре, рекомендуется, главным образом, для обработки деталей струйным методом. Размеры деталей при фосфатировании изменяются незначительно, так как с ростом фосфатного слоя происходит уменьшение толщины металла за счет его растворения.
В последние годы все больше внимания уделяется фосфатированию цветных металлов. Разработаны процессы фосфатирования цинка, кадмия, никеля, сплава ковар. Образующаяся на этих металлах пленка состоит, в основном, из четырехводного третичного фосфата цинка. На кадмии и цинке стойкая против коррозии пленка формируется за 10 -20 мин, на никеле и коваре – за 30 – 40 мин. В растворах, содержащих добавки ускорителей, продолжительность фосфатирования кадмия удается уменьшить до 5-10 мин, цинка – до 3-5 мин. Лакокрасочные покрытия, нанесенные на никель по фосфатному грунту, пригодны для изделий, работающих в тропическом климате.
Фосфатирование
Технология процесса фосфатирования проста. Фосфатирование применяют для черных и цветных металлов, и оно состоит в обработке металлических деталей (например стальных) в горячем растворе фосфорно-кислых солей некоторых металлов, главным образом марганца, железа, цинка. При этом на поверхности изделия образуется пористая пленка, состоящая из труднорастворимых фосфатов этих металлов. Благодаря большой пористости пленка хорошо удерживает масло, краску и служит отличным грунтом под лакокрасочное покрытие. Сама фосфатная пленка не обладает высокими антикоррозионными свойствами и используется в качестве защитной в сочетании с лакокрасочными покрытиями или после пропитки ее маслом. В этом случае она надежно защищает сталь от коррозии. Иногда применяют обработку фосфатированного изделия в 7—9% растворе бихромата натрия, который заполняет поры и пассивирует нефосфатированные участки поверхности металла.
Обычно фосфатирование проводят при температуре 96—98° С погружением стальных изделий в раствор, содержащий 20—35 г/л препарата «Мажеф». В его состав входят фосфаты марганца и железа —Мn(Н2РО4)2, МпНРO4, Fe(H2PO4)2. Используют также раствор на основе дигидрофосфата цинка Zn(H2P04)2. Продолжительность фосфатирования 0,5—2 ч.
Основан метод на свойствах солей фосфорной кислоты. Фосфорная кислота — Н3РО4 — может образовывать три вида солей:
1) однозамещенные – дигидрофосфаты Ме (Н2РО4)2;
2) двухзамещенные- гидрофосфаты Ме Н РО4;
3) трехзамещенные – фосфаты Ме3 (РО4)2 (где Me — двухвалентный металл).
В воде растворяются только фосфаты аммония и щелочных металлов. Двух- и трехзамещенные фосфаты железа, марганца и цинка малорастворимы. Следовательно, если создать условия для их образования, то они будут оставаться на поверхности металла.
При взаимодействии металла с фосфорной кислотой первоначально образуются дигидрофосфаты:
Me + 2Н3РО4 = Ме (Н2РО)2 + Н2
При снижении концентрации фосфорной кислоты получают вторичные и третичные соли:
Ме (Н2РО4)2 Û Ме НРО4 + Н3РО4;
3 Ме (Н2 РО4)2 Û Ме3 (РО4)2 + 4Н3РО4
В образовании фосфатной пленки участвуют продукты взаимодействия фосфорной кислоты с металлом и вещества, входящие в состав раствора для фосфатирования.
Предполагается, что образованию фосфатной пленки предшествуют реакции ионизации железа на анодных участках:
и выделение водорода на катодных участках
Железо, переходящее в раствор, связывает фосфорную кислоту, и равновесие реакций смещается вправо. Выпадающие в осадок ди- и трифосфаты кристаллизуются на поверхности стального изделия, образуя плотную кристаллическую пленку.
Фосфатирование заканчивается после того, как вся поверхность покроется сплошной пленкой и выделение водорода прекратится. Фосфатирование используют для изделий, которые эксплуатируют в морской воде, в тропических районах. Недостатком фосфатных пленок являются низкая прочность и эластичность. Они имеют короткий срок эксплуатации.
Пассивирование
Для защиты от коррозии применяют метод пассивирования — обработка металла в растворах хроматов или нитратов.
Для пассивирования оцинкованных изделий применяют раствор: 8-10 мл/л H2SO4 и Na2Cr207·2H20 — 200 г/л. Время обработки 5-30 с. От времени обработки зависит окраска пленки. При выдержке 5 с цвет пленки радужный с зеленоватым оттенком, а масса пленки составляет 0,9-1,2 г/м2. При дальнейшем увеличении времени цвет меняется от желтого до коричневого.
Для пассивирования алюминия используют раствор бихромата калия (200 г/л) и 2 мл/л НF.
Пассивация меди в хроматных растворах дает особенно хорошие результаты при защите изделий, соприкасающихся с парами SO2 и растворами нейтральных солей. Стальные детали можно обрабатывать в 60-90% растворе нитрита натрия. В результате они не ржавеют в течение двух лет.
Эмаль представляет собой стекловидную массу, получаемую сплавлением шихты (песок, мел, глина, полевой пшат и др.) и плавней (бура, сода, поташ, фтористые соли и др.). Кроме стеклообразующих веществ, в шихту вводят оксиды хрома, титана, цинка, повышающие жаростойкость, сцепляемость с металлом и придающие эмали нужную окраску.
Высокая химическая стойкость эмалей обусловлена присутствием буры и кремнезема; термостойкость обеспечивается близостью температурных коэффициентов линейного расширения покрытия и металла.
Наиболее жаростойкие эмали (так называемые керамические) выдерживают температуру 1100 ºС, а в отдельных случаях до 1400 ºС.
Эмалевые покрытия стойки к минеральным и органическим кислотам, солям, газовым средам, но разрушаются горячими растворами концентрированных щелочей, плавиковой кислоты и рядом фтористых соединений.
Эмалевую суспензию наносят на очищенную поверхность изделия погружением в расплав или пульверизацией из специального пистолета, после чего обжигают до спекания в пламенной или муфельной печи при температуре 880— 1050 ºС