Азотирование стали 40х

40.Азотирование стали.

Азотирование – химико-термическая обработка, при которой поверхностные слои насыщаются азотом.

При азотировании увеличиваются не только твердость и износостойкость, но также повышается коррозионная стойкость.

При азотировании изделия загружают в герметичные печи, куда поступает аммиак NH3 c определенной скоростью. При нагреве аммиак диссоциирует по реакции: 2NH3>2N+3H2. Атомарный азот поглощается поверхностью и диффундирует вглубь изделия.

Фазы, получающиеся в азотированном слое углеродистых сталей, не обеспечивают высокой твердость, и образующийся слой хрупкий.

Для азотирования используют стали, содержащие алюминий, молибден, хром, титан. Нитриды этих элементов дисперсны и обладают высокой твердостью и термической устойчивостью.

Типовые азотируемые стали: 38ХМЮА, 35ХМЮА, 30ХТ2Н3Ю.

Глубина и поверхностная твердость азотированного слоя зависят от ряда факторов, из которых основные: температура азотирования, продолжительность азотирования и состав азотируемой стали.

В зависимости от условий работы деталей различают азотирование:

для повышения поверхностной твердости и износостойкости;

для улучшения коррозионной стойкости (антикоррозионное азотирование).

В первом случае процесс проводят при температуре 500…560 o С в течение 24…90 часов, так как скорость азотирования составляет 0,01 мм/ч. Содержание азота в поверхностном слое составляет 10…12 %, толщина слоя (h) – 0,3…0,6 мм. На поверхности получают твердость около 1000 HV. Охлаждение проводят вместе с печью в потоке аммиака.

Значительное сокращение времени азотирования достигается при ионном азотировании, когда между катодом (деталью) и анодом (контейнерной установкой) возбуждается тлеющий разряд. Происходит ионизация азотосодержащего газа, и ионы бомбардируя поверхность катода, нагревают его до температуры насыщения. Катодное распыление осуществляется в течение 5…60 мин при напряжении 1100…1400 В и давлении 0,1…0,2 мм рт. ст., рабочее напряжение 400…1100 В, продолжительность процесса до 24 часов.

Антикоррозионное азотирование проводят и для легированных, и для углеродистых сталей. Температура проведения азотирования – 650…700 o С, продолжительность процесса – 10 часов. На поверхности образуется слой — фазы толщиной 0,01…0,03 мм, который обладает высокой стойкостью против коррозии. (–фаза – твердый раствор на основе нитрида железа Fe3N, имеющий гексагональную решетку).

Азотирование проводят на готовых изделиях, прошедших окончательную механическую и термическую обработку (закалка с высоким отпуском).

После азотирования в сердцевине изделия сохраняется структура сорбита, которая обеспечивает повышенную прочность и вязкость.

41.Состав, назначение и термообработка улучшаемых сталей.

Содержат от 0,3 до 0,5 % углерода. Используют после улучшения (закалка + высокий опуск). Структура: сорбит отпуска. Должны иметь высокий предел текучести, малую чувствительность к концентрациям напряжения в условиях циклической нагрузки, высокий предел выносливости, достаточный запас вязкости. Основной признак улучшаемых сталей – прокаливаемость. Чем тяжелее условия эксплуатации детали, тем большая должна быть прокаливаемость, тем сложнее должен быть состав стали. Для валов сечением менее 20 мм: нелегированные стали 35, 40, 45, 50. Введение хрома или марганца повышает прокаливаемость до 25 мм: 40Х, 40Г2, 45Г2. одновременное легирование хромом и марганцем повышает прокаливаемость до 10 мм (40ХГ). Введение бора увеличивает прокаливаемость до 600 мм. Добавка титана способствует получению мелкозернистой структуры (препятствует росту аустенитного зерна) (30ХР, 30ХГТ, 40ХГТР). К этой группе относят и хромансиль (30ХГСА).

Высоконагруженные деталь изготавливают из сталей, легированных никелем или никелем с молибденом. Прокаливаемость 75-100 мм обеспечивается в сталях 40ХН, 30ХН3А, 40ХН2МА. Дальнейшее повышение прокаливаемости достигается введением ванадия (38ХН3МФА).

Азотирование и карбонитрирование втулок и пластин из сталей 38Х2МЮА (1.8509) и 40Х (AISI 5135, 1.7034 ) крупными партиями в несколько тысяч штук

К различным деталям машиностроения типа «Втулка», «Палец», «Шайба дистанционная», «Прокладка», «Шайба полуоси», «Фиксатор тяги», «Пластина» предъявляются высокие параметры твердости и износостойкости. Для соответствия этим требованиям поверхность деталей упрочняют методами химико-термической обработки (ХТО). На сегодняшний день самой эффективной технологией поверхностного упрочнения сталей и сплавов является ионная ХТО: плазменное (ионно-вакуумное) азотирование и карбонитрирование.
Ионная ХТО приводит к комплексному улучшению характеристик рабочих поверхностей деталей: повышаются твердость, износо- задиростойкость, снижается коэффициент трения. Коррозионная стойкость поверхности низколегированных сталей после ионной ХТО сопоставима с нержавеющими. Сохраняются исходные требования к поверхностной чистоте и геометрическим размерам, не требуются шлифовальные операции и хонингование.
Преимущества ионного азотирования в сравнении с другими методами химико-термической обработки наиболее заметны при упрочнении деталей для массовой программы и крупносерийного производства. Ионно-плазменное азотирование и карбонитрирование – это ресурсосберегающие и экологически чистые технологии.
Низкий расход газов, отсутствие вредных выбросов, умеренный расход электроэнергии, все это делает ионную ХТО оптимальной технологией для поверхностного упрочнения деталей в промышленных масштабах. При этом, благодаря равномерному распределению температуры по всему объему садки, характеристики азотированного слоя одинаковы независимо от положения деталей в установке и общего объема садки.
Нашей фирмой проводятся работы по упрочнению машиностроительных деталей и другой продукции партиями в несколько тысяч штук. В частности, на постоянной основе упрочняем массовую продукцию для ООО «НПК «ИЗУРАН» (Пермь, http://npk-izuran.ru/), ООО «Ростсельмаш» (Ростов-на-Дону, https://rostselmash.com), ООО «Гинэль» (Пермь),
ООО «Камский арматурный завод» (Пермь, http://www.kaz59.ru).

Читать еще:  Из какой стали делают сверла по металлу

Наиболее часто используемые марки сталей при производстве данных деталей – 38Х2МЮА, 40Х, 30ХГСА и др.

АЗОТИРОВАНИЕ СТАЛИ 38Х2МЮА (1.8509)

В процессе ионного азотирования на поверхности деталей, изготовленных из стали 38Х2МЮА (1.8509) сформировались диффузионный поверхностный слой и нитридная зона, для которых характерны высокая твердость, задиро- и износостойкость. Диффузионный слой характеризуется отсутствием хрупкой нитридной сетки и имеет мелкодисперсные нитридные включения в упрочненной матрице. Общая глубина слоя 0,36 – 0,4 мм., поверхностная твердость составляет 1010 – 1050 HV5 (кгс/мм 2 ).

Таблица 1. Характеристики азотированного слоя на стали 38Х2МЮА (1.8509)

Поверхностная твердость, HV5, кгс/мм 2 1010 – 1050
Поверхностная микротвердость, HV0.1, кгс/мм 2 1090 – 1145
Глубина азотированного слоя по микроструктуре, hм, мм. 0,36 – 0,37
Глубина азотированного слоя по микротвердости, hс, мм. 0,40
Толщина нитридной зоны hн.з., мкм. 12 – 15
Хрупкость по шкале ВИАМ 1 балл, не хрупкий

Рисунок 1. Микроструктура азотированного слоя на стали 38Х2МЮА (1.8509)

АЗОТИРОВАНИЕ СТАЛИ 40Х (AISI 5135, 1.7034)

На деталях, выполненных из стали 40Х (AISI 5135, 1.7034) также формируется диффузионный слой и нитридная зона. Поверхность приобретает повышенную твердость, высокую задиро- и износостойкость. Поверхностный слой не хрупкий. Глубина слоя по микроструктуре составляет 0,28 – 0,3 мм.

Таблица 2. Характеристики азотированного слоя на стали 40Х (AISI 5135, 1.7034)

Поверхностная твердость, HV5, кгс/мм 2 710 – 750
Поверхностная микротвердость, HV0.1, кгс/мм 2 750 – 810
Глубина азотированного слоя по микроструктуре, hм, мм. 0,28 – 0,30
Глубина азотированного слоя по микротвердости, hс, мм. 0,30
Толщина нитридной зоны hн.з., мкм. 6 – 9
Хрупкость по шкале ВИАМ 1 балл, не хрупкий

Рисунок 2. Микроструктура азотированного слоя на стали 40Х (AISI 5135, 1.7034)

АЗОТИРОВАНИЕ СТАЛИ 30ХГСА

На деталях, выполненных из стали з0ХГСА также формируется диффузионный слой и нитридная зона. Поверхность приобретает повышенную твердость, высокую задиро- и износостойкость. Поверхностный слой не хрупкий. Глубина слоя по микроструктуре составляет 0,35 – 0,4 мм.

Таблица 3. Характеристики азотированного слоя на стали 30ХГСА

Поверхностная твердость, HV5, кгс/мм 2 640 – 680
Поверхностная микротвердость, HV0.1, кгс/мм 2 840 – 910
Глубина азотированного слоя по микроструктуре, hм, мм. 0,35 – 0,36
Глубина азотированного слоя по микротвердости, hс, мм. 0,40
Толщина нитридной зоны hн.з., мкм. 9 – 12
Хрупкость по шкале ВИАМ 1 балл, не хрупкий

Рисунок 3. Микроструктура азотированного слоя на стали 40Х (AISI 5135, 1.7034)

Рисунок 4. Графики распределения микротвердости по глубине азотированного слоя

Рисунок 5. Отпечаток хрупкости на сталях, HV30, х100:
а – 40Х; б – 38Х2МЮА; в – 30ХГСА

В результате упрочнения деталей методом ионного азотирования получен диффузионный слой и высококачественная нитридная зона, которые обеспечивают повышение твердости в несколько раз, коррозионной стойкости и улучшение антифрикционных и триботехнических свойств деталей.
Технологические возможности процесса ионно-вакуумного азотирования позволяют создавать на металлах и сплавах поверхностные диффузионные слои различного химического состава, которые в сочетании со свойствами основного металла придают изделиям комплекс физико-механических свойств, определяющих их длительную эксплуатационную надежность. На сегодняшний день ионно-вакуумное азотирование является передовой технологией поверхностного упрочнения деталей, превышающей по своим техническим характеристикам другие типы покрытий, в том числе хромирование.
В настоящее время компанией ООО «Ионные технологии» ведутся более 10 НИОКР по внедрению технологий ионной химико-термической обработки с предприятиями различных отраслей промышленности.

Читать еще:  Какая марка стали лучше для ножа

Азотирование

Вид химико-термической обработки, заключающийся в диффузионном насыщении поверхностного слоя стальных или титановых деталей азотом. Глубина насыщения составляет 0,2… 0,8 мм. Азотирование стали проводят в среде аммиака или в расплаве солей на основе карбамида и цианата при температуре 500…600 °C. В результате азотирования повышается твердость, износостойкость, коррозийная стойкость на воздухе и в воде, усталостная прочность (выносливость). Наибольшее распространение азотирование получило при производстве деталей, работающих в условиях трения и при температурах до 500…600 °С (коленчатые валы, шпиндельные валы, детали аппаратуры двигателей и др.).

Образующийся атомарный азот диффундирует в металл.

Структура азотированного слоя характеризуется диаграммой состояния Fe – N, показанной на рисунке 1.

Рисунок 1

Таким образом, при температурах ниже 591 °С в азотированном слое будут располагаться следующие фазы (от поверхности к сердцевине): &#949 – &#947′ – &#945

При температурах выше 591 °С в начале азотирования также будет образовываться &#945-фаза, но при дальнейшем повышении концентрации азота появится азотистый аустенит (&#947-фаза). При наступлении предельного насыщения аустенита азотом будут появляться нитриды, представляющие собой &#947′ и &#949 фазы. Таким образом, при температурах выше 591 °С в азотированном слое будут располагаться следующие фазы (от поверхности к сердцевине): &#949 – &#947′ – &#947 – &#945.

Для азотирования используются как углеродистые, так и легированные с концентрацией углерода 0,3…0,5 %. Наибольшее распространение получили стали, легированные такими элементами, как хром, алюминий, молибден. Эти стали называются нитраллоями. При азотировании таких сталей в их поверхностном слое образуются нитриды хрома, молибдена и алюминия, которые, выделяясь в дисперсном виде, препятствуют движению дислокаций, что, в свою очередь, способствует повышению твердости и износостойкости. Кроме того, молибден способствует устранению явления отпускной хрупкости, возникающей в результате медленного охлаждения после азотирования.

Например, если твёрдость азотированного слоя у углеродистых сталей составляет HV 200-250, у легированных сталей – HV 600-800, то у нитраллоев твердость может доходить до HV 1200 и выше.

Рисунок 2

Следует иметь в виду, что легирующие элементы, повышая твердость, одновременно уменьшают толщину слоя. Особенно сильно уменьшают толщину азотированного слоя вольфрам, никель, хром, молибден. Влияние легирующих элементов на глубину азотированного слоя показано на рисунке 3.

Рисунок 3

Для изделий с высокой поверхностной твердостью рекомендуют использовать сталь 38Х2МЮА. Однако в процессе азотирования этой стали, за счет присутствия в ней алюминия, проявляется ее сильная склонность к деформированию. Использование же сталей, не содержащих алюминия, приводит к заметному снижению твердости и износостойкости азотированного слоя, зато позволяет изготавливать изделия более сложной конфигурации. В станкостроении, например, для азотирования используют улучшаемые, легированные стали типа 40Х, 40ХФА. Для тяжело нагруженных деталей, работающих в условиях циклических изгибающих нагрузок, рекомендуются стали 30Х3М, 38ХГМ, 38ХНМФА, 38ХН3МА.

Для изготовления деталей топливной аппаратуры, где требуется повышенная точность размеров, используют сталь 30Х3МФ1. Дополнительное легирование этой стали кремнием (30Х3МФ1С) способствует повышению твердости азотированного слоя.

Для азотирования иногда назначаются и цементуемые стали, содержащие в своем составе хром, молибден, вольфрам, ванадий.

Азотирование стали 40х

Цементация может проводиться в твердых, газообразных и жидких углеродсодержащих средах, которые называются карбюризаторами. Нагрев осуществляют в среде, легко отдающей углерод.

Цементация в твердой среде

Наиболее старым способом является цементация в твердой среде. Детали укладываются в стальной ящик, должны быть полностью покрыты карбюризатором(уголь) и не касаться друг друга и стенок ящика. Ящик герметично закрывается и загружается в печь. При нагреве образуется окись углерода (CO), которая в свою очередь разлагается на углекислый газ (СО2) и атомарный углерод. Так как детали нагреты до температуры выше критической точки Ас3, атомарный углерод проникает вовнутрь мягкого железа.

Режимы обработки: 900-950 градусов, 1 час выдержки на 0,1 мм толщины цементированного слоя. Для получения 1 мм слоя — выдержка 10 часов.

В последнее время нашла широкое применение цементация газами. Детали загружают в печи в которые вводят цементующие газы (окись углерода и метан). При нагреве газ разлагается, образуя атомарный углерод. Продолжительность процесса газовой цементации меньше, чем цементации твердым карбюризатором, так как нагрев и охлаждение производятся с большими скоростями, чем это можно осуществить в цементационных ящиках. Кроме этого, газовая цементация имеет ряд других преимуществ: возможность точного регулирования процесса цементации путем изменения состава цементующего газа, отсутствие громоздкого оборудования и угольной пыли и возможность производить закалку непосредственно из печи. Процесс газовой цементации более экономичен

Какие материалы подвергаются цементации?

Цементации подвергают стали с низким содержанием углерода (до 0,25 %) или легированные низкоуглеродистые стали марок: 20Г, 20Х, 20ХФ, 12ХНЗА, 20Х2Н4А, 18ХГТ, 18Х2Н4ВА, 20ХГНР и др. Данной обработке подвергают такие детали машин и аппаратов, которые должны иметь износостойкую рабочую поверхность и вязкую сердцевину, такие как: зубчатые колеса, коленчатые валы, кулачки, червяки, поршневых пальцев, отвалов плугов и др.

Свойства металла после обработки.

В результате цементации достигается только выгодное распределение углерода по сечению. Окончательно формирует свойства цементованной детали последующая термообработка. Все изделия подвергают закалке с низким. После закалки цементованное изделие приобретает высокую твердость (50..58HRC) и износостойкость, повышается предел контактной выносливости и предел выносливости при изгибе, при сохранении вязкой сердцевины.

Азотирование – процесс насыщения поверхностного слоя детали азотом, с целью повышения твёрдости, износоустойчивости, предела усталости и коррозионной стойкости.

Азотирование проводится при 500600 °С в герметично закрытом контейнере из железа, который внедряется в печь. Его разогревают до температуры соответствующей выбранному режиму, и выдерживается необходимое время. В контейнер закладывают детали, которые будут подвержены азотированию.

Туда же под определенным давлением запускается аммиак, который под действием высоких температур диссоциирует на водород и атомарный азот, который в свою очередь проникает в поверхностный слой мягкого металла, образуя нитриды с элементами, входящими в состав стали, алюминием, хромом, молибденом. Они имеют высокую твердость. По окончании процедуры печь плавно охлаждается вместе с потоком аммиака.

Толщина нитридного слоя может варьировать от 0,3 до 0,6 мм. Таким образом, отпадает надобность в последующей термической обработке с целью повышения прочностных характеристик.

Нитриды железа обладают сравнительно невысокой твердостью и незначительно повышают ее в стали. Следовательно, для азотирования применяют легированные стали, содержащие алюминий, хром и молибден, такие как 38ХМЮА, 18Х2Н4ВА и др.

Азотированию подвергают также детали из коррозионностойких, жаростойких и жаропрочных сталей, работающих на трение в агрессивных средах и при высоких температурах; матрицы и пуансоны для горячей штамповки, пресс-формы из инструментальных сталей для литья под давлением (Х12Ф1, ЗХ2В8Ф и др.); пружины из сталей 50ХФА, 60С2. Для азотирования целесообразно применять стали, содержащие титан.

Если азотирование проводится с целью повышения коррозионностойкости, то этому процессу подвергаются также и углеродистые стали.

Ссылка на основную публикацию
Adblock
detector