Влияние хрома на свойства стали

Влияние хрома на свойства высоколегированных сталей

Классификация высоколегированных сталей и сплавов

ВЫСОКОЛЕГИРОВАННЫЕ СТАЛИ И СПЛАВЫ

Согласно ГОСТ 5632-72 к высоколегированным сталям относят сплавы, в которых содержание железа составляет более 45 %, суммарная массовая доля легирующих элементов не менее 10 % при массовой доле одного из элементов не менее 8 %.

v В зависимости от основных свойств стали и сплавы подразделяют на группы:

I – Коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др.

Основным легирующем элементов данных сталей является хром с содержанием более 12 %. Для сталей стойких против атмосферной коррозии содержание хрома увеличивается до 15 %, для кислотостойких сталей более 16 %.

II – Жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 °С, работающие в ненагруженном или слабонагруженном состоянии.

Стали, обладающие жаростойкостью до 900 °С содержат до 18 % хрома (12Х17, 08Х17Т, 10Х13СЮ и др.), до 1100 °С ­- более 25 % хрома (15Х28, 15Х25Т).

III – Жаропрочные стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.

Например, жаропрочные стали, работающие при температурах:

· 585…610 °С – 18Х12ВМБФР, 15Х12ВНМФ и др.

· до 650 °С -12Х18Н9Т, 12Х18Н10Т и др.

· до 800 °С – 10Х23Н18, 12Х25Н16 и др.

v В зависимости от основной структуры, полученной при охлаждении сталей на воздухе после высокотемпературного нагрева (в нормализованном состоянии), стали подразделяют на классы:

* Мартенситный – стали с основной структурой мартенсита (20Х13, 30Х13, 40Х13, 15Х11МФ, 18Х11МНФБ, 20Х12ВНМФ и др.).

* Мартенсито-ферритный – стали, содержащие в структуре кроме мартенсита, не менее 10 % феррита (12Х13, 14Х17Н2, 09Х16Н4Б, 15Х12ВНМФ, 18Х12ВМБФР и др.).

* Ферритный – стали, имеющие структуру феррита, без α ®γ превращений (08Х13, 12Х17, 08Х17Т, 15Х25Т, 15Х28 и др.).

* Аустенито-мартенситный – стали, имеющие структуру аустенита и мартенсита, количество которых можно изменять в широких пределах (07Х16Н6, 08Х17Н5М3, 09Х15Н8Ю, 09Х17Н7Ю, 20Х13Н4Г9 и др.).

* Аустенито-ферритный – стали, имеющие структуру аустенита и феррита, где феррита более 10 % (08Х18Г8Н2Т, 08Х21Н6М2Т, 20Х23Н13, 08Х22Н6Т и др.).

* Аустенитный – стали, имеющие структуру аустенита (08Х18Н10, 08Х18Н10Т, 12Х18Н9, 17Х18Н9, 10Х14Г14Н4Т, 10Х14АГ15, 03Х17Н14М3, 07Х21Г7АН5, 08Х10Н20Т2 и др.).

v В зависимости от системы легирования высоколегированные стали делятся на:

Основными легирующими элементами высоколегированных сталей являются хром и никель. Они определяют структуру и свойства сталей. Также в качестве легирующих элементов применяются кремний, вольфрам, молибден, никель, титан, бор и др. они способствуют повышению прочности, жаропрочности, стойкости против коррозии.

v Относительно системы упрочнения высоколегированные стали делятся на стали:

– с карбидным упрочнением,

­- с боридным упрочнением,

– с интерметаллидным упрочнением.

Стали, содержащие углерода в пределах 0,2…1,0 %, имеют карбидное упрочнение. Этот тип упрочнения характерен в основном для жаропрочных и жаростойких сталей. Такое упрочнение достигается при выдержке стали в интервале температур 600…650 °С, в результате выделения сложных карбидов железа, хрома, ниобия, ванадия и вольфрама, типа Me23C6, Me6C, Me2C и др.

Никельсодержащие стали, легированные титаном в пределах 1,0…3,5 % и алюминием до 6% упрочняются вследствие образования при температуре 650…850 °С интерметаллидных фаз типа Ni3(Ti,Al), (Ni,Fe)2Ti и др.

Упрочнении аустенита боридных сталей достигается в результате образования боридов железа, хрома, ниобия, углерода, молибдена и вольфрама.

В связи с тем, что стали в большинстве случаев содержат несколько легирующих элементов, упрочнение их бывает чаще всего комплексным.

v В зависимости от химического состава сплавы подразделяют на классы по основному составляющему элементу:

– сплавы на железоникелевой основе;

– сплавы на никелевой основе.

К сплавам на железоникелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в железоникелевой основе (сумма никеля и железа более 65 % при приблизительном отношении никеля к железу 1:1,5).

К сплавам на никелевой основе отнесены сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в никелевой основе (содержания никеля не менее 50%).

Хром – основной легирующий элемент для получения коррозионностойких, жаропрочных сталей и жаростойких сталей.

В коррозионностойких и кислотостойких сталях хром играет двоякую роль. При его содержании более 12 % резко повышается электрохимический потенциал стали, сталь «облагораживается» и становится более устойчивой в растворах электролитов. В то же время хром способствует образованию на поверхности металла плотной и достаточно прочной оксидной плёнки, защищающий металл от воздействия коррозионно-активной среды. Эта же стойкая плёнка хрома защищает сталь от окисления при высоких температурах – повышает её жаростойкость. Таким образом, высокохромистые стали оказываются стойкими против химической и электрохимической коррозии в окислительных средах.

Наряду с высокой коррозионной стойкостью стали, содержащие 12 % Cr, имеют высокие прочность и жаропрочность (значительно выше, чем у низко- и среднелегированных хромистых и хромомолибденовых сталей).

При высоких механических и антикоррозионных свойствах высокохромистые стали имеют пониженные технологические свойства, в том числе пониженную свариваемость. Это связано с особенностями фазового состояния высокохромистых сталей и особенностями структурных и фазовых превращений, происходящих при нагреве и охлаждении.

Читать еще:  Какие сплавы называются сталями

ВЫСОКОХРОМИСТЫЕ СТАЛИ МАРТЕНСИТНОГО КЛАССА

Дата добавления: 2015-05-06 ; Просмотров: 3072 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Влияние химических элементов на свойства стали.

Каталог
Наша группа

Влияние хим. элементов на свойства стали.

Условные обозначения химических элементов:

хром ( Cr ) — Х
никель ( Ni ) — Н
молибден ( Mo ) — М
титан ( Ti ) — Т
медь ( Cu ) — Д
ванадий ( V ) — Ф
вольфрам ( W ) — В
азот ( N ) — А
алюминий ( Аl ) — Ю
бериллий ( Be ) — Л
бор ( B ) — Р
висмут ( Вi ) — Ви
галлий ( Ga ) — Гл
иридий ( Ir ) — И
кадмий ( Cd ) — Кд
кобальт ( Co ) — К
кремний ( Si ) — C
магний ( Mg ) — Ш
марганец ( Mn ) — Г
свинец ( Pb ) — АС
ниобий ( Nb) — Б
селен ( Se ) — Е
углерод ( C ) — У
фосфор ( P ) — П
цирконий ( Zr ) — Ц

ВЛИЯНИЕ ПРИМЕСЕЙ НА СТАЛЬ И ЕЕ СВОЙСТВА

Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.

Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)

Марганец — как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.

Сера — является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).

Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ

Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.

Никель (Н) — сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.

Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.

Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.

Кремний (С)- в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.

Марганец (Г) — при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.

Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.

Титан (Т) — повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.

Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.

Алюминий (Ю) — повышает жаростойкость и окалиностойкость.

Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.

Церий — повышает прочность и особенно пластичность.

Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.

Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.

Влияние химического состава на механические свойства стали

Каждый химический элемент, входящий в состав стали, по-своему влияет на ее механические свойства – улучшает или ухудшает.

Углерод (С), являющийся обязательным элементом и находящимся в стали обычно в виде химического соединения Fe3C (карбид железа), с увеличением его содержания до 1,2% повышает твердость, прочность и упругость стали и уменьшает вязкость и способность к свариваемости. При этом также ухудшаются обрабатываемость и свариваемость.

Кремний (Si) считается полезной примесью, и вводится в качестве активного раскислителя. Как правило, он содержится в стали в небольшом количестве (в пределах до 0,4%) и заметного влияния на ее свойства не оказывает. Но при содержании кремния более 2% сталь становится хрупкой и при ковке разрушается.

Читать еще:  Квадратная труба из нержавеющей стали

Марганец (Mn) содержится в обыкновенной углеродистой стали в небольшом количестве (0,3-0,8%) и серьезного влияния на ее свойства не оказывает. Марганец уменьшает вредное влияние кислорода и серы, повышает твердость и прочность стали, ее режущие свойства, увеличивает прокаливаемость, но снижает стойкость к ударным нагрузкам.

Сера (S) и фосфор (Р) являются вредными примесями. Их содержание даже в незначительных количествах оказывает вредное влияние на механические свойства стали. Содержание в стали более 0,045% серы делает сталь красноломкой, т.е. такой, которая при ковке в нагретом состоянии дает трещины. От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды (MnS). Содержание в стали более 0,045% фосфора, делает сталь хладноломкой, т.е. легко ломающейся в холодном состоянии. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

Ниобий (Nb) улучшает кислостойкость стали и способствует уменьшению коррозии в сварных конструкциях.

Титан (Тi) повышает прочность, плотность и пластичность стали, улучшает обрабатываемость и сопротивление коррозии. Повышает прокаливаемость стали при малых содержаниях и понижает при больших.

Хром (Cr) повышает прочность, закаливаемость и жаростойкость, режущие свойства и стойкость на истирание, но снижает вязкость и теплопроводность стали. Содержание большого количества хрома (в обычных сортах стали доходит до 2%, а в специальных – до 25%) делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.

Молибден (Mo) повышает прочностные характеристики стали, увеличивает твердость, красностойкость, антикоррозионные свойства. Делает ее теплоустойчивой, увеличивает несущую способность конструкций при ударных нагрузках и высоких температурах. Затрудняет сварку, так как активно окисляется и выгорает.

Никель (Ni) увеличивает вязкость, прочность и упругость, но несколько снижает теплопроводность стали. Никелевые стали хорошо куются. Значительное содержание никеля делает сталь немагнитной, коррозионностойкой и жаропрочной.

Вольфрам (W) образуя в стали твердые химические соединения – карбиды, резко увеличивает твердость и красностойкость. Увеличивает работоспособность стали при высоких температурах, ее прокаливаемость, повышает сопротивление стали к коррозии и истиранию, уменьшает свариваемость.

Ванадий (V) обеспечивает мелкозернистость стали, повышает твердость и прочность. Увеличивает плотность стали, так как является хорошим раскислителем. Снижает чувствительность стали к перегреву и улучшает свариваемость.

Кобальт (Co) повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Алюминий (Аl) является активным раскислителем. Делает сталь мелкозернистой, однородной по химическому составу, предотвращает старение, улучшает штампуемость, повышает твердость и прочность, увеличивает сопротивление окислению при высоких температурах.

Медь (Cu) влияет на повышение коррозионной стойкости, предела текучести и прокаливаемости. На свариваемость не влияет.

Для всестороннего понимания и анализа процессов, происходящих при легировании и деформировании сталей, важную роль играет знание зависимостей между химическим составом и механическими свойствами.

Целью настоящих исследований является изучение комплексного влияния химического состава на предел текучести σТ арматурной стали класса А500С.

В течение сентября и октября текущего года в Лаборатории испытаний строительных материалов и конструкций ГБУ «ЦЭИИС» проводились испытания образцов арматурных стержней диаметром от Ø16 до Ø36. Были выполнены более 30 параллельных испытаний. При этом для одной и той же пробы данного типоразмера арматурных стержней определяли фактическую массовую долю химических элементов с помощью оптико-эмиссионного спектрометра PMI-MASTER SORT (рис.1) и механические свойства стали при помощи испытательной машины ИР-1000М-авто (рис.2).

Рис.1 – Испытание арматурного стержня для определения химического состава стали.

Рис.2 – Испытания арматурной стали на растяжение.

Для обеспечения достоверности статистических выводов и содержательной интерпретации результатов исследований сначала определили необходимый объем выборки, т.е. минимальное количество параллельных испытаний. Так как в данном случае испытания проводятся для оценки математического ожидания, то при нормальном распределении исследуемой величины минимально необходимый объем испытаний можно найти из соотношения:

где υ – выборочный коэффициент вариации,

tα,k – коэффициент Стьюдента,

α=1-P – уровень значимости (Р – доверительная вероятность),

k = n-1 – число степеней свободы,

ΔМ – максимальная относительная ошибка (допуск) при оценке математического ожидания в долях математического ожидания (ΔМ = γ*δМ, где γ – генеральный коэффициент вариации, δМ – максимальная ошибка при оценке математического ожидания в долях среднеквадратического отклонения).

Как правило, генеральный коэффициент вариации γ неизвестен, и его заменяют выборочным коэффициентом вариации υ, для определения которого нами была проведена серия из десяти предварительных испытаний.

По результатам проведенных испытаний и выполненных расчетов при доверительной вероятности Р=0,95 получен необходимый объем выборки, равной n=26. Фактическое количество испытаний, как было сказано выше, составило 36.

Массив данных, полученных по результатам проведенных параллельных испытаний, был обработан с помощью многофакторного корреляционного анализа.

Уравнение множественной регрессии может быть представлено в виде:

где X=(X1, X2,…, Xm) – вектор независимых (исходных) переменных; β – вектор параметров (подлежащих определению); ε – случайная ошибка (отклонение); Y – зависимая (расчетная) переменная.

Разработка множественной корреляционной модели всегда сопряжена с отбором существенных факторов, оказывающих наибольшее влияние на признак-результат. В нашем случае из дальнейшего рассмотрения были исключены три элемента (Аl, Тi, W) по причине их низкой массовой доли (

Читать еще:  Закалка пружинной стали

Если вы нашли ошибку: выделите текст и нажмите Ctrl+Enter

Влияние легирующих элементов на свойства стали

прочности приобретает после отпуска при 550°; между тем сопротивление удару в первом случае 10, а во втором — 7 кгм/см 2 .

Таким образом, следует считать, что кремний в количестве примерно до 1,5% оказывает скорее положительное влияние на свойства улучшенной стали; кремнистые стали, содержащие до 1,5% Si, при обработке на одинаковую твердость с нелегированными обладают несколько более высоким запасом вязкости, а при равной температуре отпуска превосходят нелегированную сталь по показателям прочности, уступая ей, однако, в отношении вязкости. Вместе с тем введение в улучшаемую сталь значительного количества кремния (более 2% Si) сопровождается ухудшением ее вязкости и температурного запаса вязкости.

Марганец. На рис. 191 показано влияние марганца на предел прочности и относительное удлинение улучшенной стали с различным содержанием в ней углерода. Из рисунка видно, что с увеличением содержания в стали марганца предел прочности несколько возрастает, а относительное удлинение, наоборот, снижается. Характерно, что чем ниже содержание в стали углерода, тем заметнее действие марганца.

Влияние марганца на общий комплекс механических свойств улучшенной стали с одинаковым содержанием углерода показано по данным автора в табл. 68. Увеличение содержания марганца с 0,45 до 1,35% сравнительно слабо отражается на механических свойствах стали, содержащей 0,25—0,28% С; при более высоком содержании марганца (до 2,79%) наблюдается существенное повышение показателей прочности при одновременном значительном снижении пластичности и ударной вязкости.

Более заметно влияние марганца в случае испытания на удар при отрицательных температурах. На рис. 192 по данным автора показано влияние марганца на ударную вязкость образцов, обработанных на твердость 228—217 Нв при различных температурах испытания. Как видно из приведенных данных, увеличение содержания марганца с 0,45 до 1,35% вызывает некоторое повышение температурного запаса вязкости, но и в этом случае сталь с 2,79% Мп обнаружила высокую склонность к хрупкому разрушению.

Отрицательный эффект влияния повышенных количеств марганца на вязкость термически улучшенной стали с 0,35—0,40 % С был установлен также В. Д. Садовским и Н. П. Чупраковой, которые сделали вывод, что «только при содержании марганца, не превышающем 1,5%, можно рассчитывать на хорошую ударную вязкость».

Существуют, однако, указания о том, что при низком содержании в стали углерода присутствие значительных количеств марганца (до 3—5%) не вызывает ухудшения вязкости термически улучшенной стали.

На рис. 193 показано влияние марганца на механические свойства стали с различным содержанием углерода после закалки с 900° и высокого отпуска при одинаковой температуре. В случае содержания углерода в пределах 0,09—0,14%, даже при 4% Мп, ударная вязкость неизменно сохраняется на весьма высоком уровне, в то время как предел прочности и предел текучести возрастают.

В стали с 0,25—0,37% С увеличение содержания марганца выше 3% сопровождается снижением вязкости. И. Е. Конторович считает, что: «стали с низким содержанием углерода (0,12—0,15%) и 3—5% марганца имеют высокие механические -свойства. Резкое снижение вязкости обнаруживается только у сталей с более высоким содержанием углерода при таком же содержании марганца».

Аналогичного мнения придерживаются и некоторые другие авторы.

Таким образом, в термически улучшаемых сталях отрицательное влияние больших количеств марганца обнаруживается только в присутствии значительного количества углерода, при

чем чем ниже содержание углерода, тем выше может быть допущено содержание в стали марганца. По крайней мере, при содержании до 1,8—2,0% Мп еще нельзя констатировать вредного его действия на среднеуглеродистую конструкционную сталь

(0,2—0,4% С). Это подтверждается также широким опытом использования марганцовистых сталей в промышленности.

Хром. Влияние хрома на механические свойства стали после закалки и высокого отпуска показано в табл. 69. Из данных таблицы видно, что в стали, отпущенной при 600°, увеличение содержания хрома сопровождается повышением прочности и некоторой потерей вязкости при сохранении пластичности примерно на одном уровне. Влияние хрома несколько ослабевает в случае отпуска стали при 650°. Это объясняется тем, что хром замедляет выделение и коагуляцию карбидов при отпуске, несколько повышает температуру рекристаллизации а-фазы и потому заметно задерживает разупрочнение стали при 600°. Однако эффект его действия резко ослабляется при 650°, поскольку температурный район отпуска в этом случае оказывается сильно смещенным от тех зон, в которых развивается карбидообразование (500—550°), а также рекристаллизация (550—600°) ос-фазы в хромистых сталях при отпуске.

Ввиду того, что с повышением содержания хрома при одинаковой температуре отпуска показатели прочности возрастают, истинное влияние хрома на ударную вязкость оказывается «замаскированным». Более надежные представления о действии хрома на ударную вязкость могут быть получены путем сравнения свойств при условии одинаковой прочности или твердости стали.

На рис. 194 показано влияние хрома на ударную вязкость стали с различным содержанием углерода, обработанной на предел прочности, равный 100 кг/мм 2 . Из рисунка видно, что при

Автор: Администрация Общая оценка статьи: Опубликовано: 2011.02.21

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Ссылка на основную публикацию
Adblock
detector