Условный предел текучести стали
Предел текучести
Если охарактеризовать понятие предела текучести кратко, то в сопротивлении материалов пределом текучести называют напряжение, при котором начинает развиваться пластическая деформация. Предел текучести относится к характеристикам прочности.
Согласно [1], текучесть – это макропластическая деформация с весьма малым упрочнением dτ/dγ.
Физический предел текучести – это механическая характеристика материалов: напряжение, отвечающее нижнему положению площадки текучести в диаграмме растяжения для материалов, имеющих эту площадку (рисунок), σТ=PТ/F. Здесь PТ – это нагрузка предела текучести, а F – это первоначальная площадь поперечного сечения образца.
Предел текучести устанавливает границу между упругой и упруго-пластической зонами деформирования. Даже небольшое увеличение напряжения (нагрузки) выше предела текучести вызывает значительные деформации. [2]
Условный предел текучести
Условный предел текучести (он же технический предел текучести). Для материалов, не имеющих на диаграмме площадки текучести, принимают условный предел текучести – напряжение, при котором остаточная деформация образца достигает определённого значения, установленного техническими условиями (большего, чем это установлено для предела упругости). [2] Под условным пределом текучести обычно подразумевают такое напряжение, при котором остаточная деформация составляет 0,2%. Таким образом обычно условный предел текучести при растяжении обозначается σ0,2.
Выделяют также условный предел текучести при изгибе и условный предел текучести при кручении.
Предел текучести металла
Характеристика, данная выше, справедлива в первую очередь для предела текучести металла. Предел текучести металла измеряется в кг/мм 2 или Н/м 2 . На значение предела текучести металла влияют самые разные факторов, например: толщина образца, режим термообработки, наличие тех или иных примесей и легирующих элементов, микроструктура, тип и дефекты кристаллической решётки и др. Предел текучести металлов сильно меняется с изменением температуры.
Предел текучести стали
Предел текучести сталей в ГОСТах указывается с пометкой “не менее”, единица измерения МПа. Приведём в качестве примера регламентируемые значения предела текучести σТ некоторых распространённых сталей.
Для сортового проката базового исполнения (ГОСТ 1050-88, сталь конструкционная углеродистая качественная) диаметром или толщиной до 80 мм справедливы следующие значения предела текучести сталей:
- Предел текучести стали 20 (Ст20, 20) при T=20°С, прокат, после нормализации – не менее 245 Н/мм 2 или 25 кгс/мм 2 .
- Предел текучести стали 30 (Ст30, 30) при T=20°С, прокат, после нормализации – не менее 295 Н/мм 2 или 30 кгс/мм 2 .
- Предел текучести стали 45 (Ст45, 45) при T=20°С, прокат, после нормализации – не менее 355 Н/мм 2 или 36 кгс/мм 2 .
Для этих же сталей, изготавливаемых по согласованию потребителя с изготовителем, ГОСТ 1050-88 предусматривает иные характеристики. В частности, нормированный предел текучести сталей, определяемый на образцах, вырезанных из термически обработанных стальных заготовок указанного в заказе размера, будет иметь следующие значения:
- Предел текучести стали 30 (Ст30, закалка+отпуск): прокат размером до 16 мм – не менее 400 Н/мм 2 или 41 кгс/мм 2 ; прокат размером от 16 до 40 мм – не менее 355 Н/мм 2 или 36 кгс/мм 2 ; прокат размером от 40 до 100 мм – не менее295 Н/мм 2 или 30 кгс/мм 2 .
- Предел текучести стали 45 (Ст45, закалка+отпуск): прокат размером до 16 мм – не менее 490 Н/мм 2 или 50 кгс/мм 2 ; прокат размером от 16 до 40 мм – не менее 430 Н/мм 2 или 44 кгс/мм 2 ; прокат размером от 40 до 100 мм – не менее 375 Н/мм 2 или 38 кгс/мм 2 .
*Механические свойства стали 30 распространяются на прокат размером до 63 мм.
Предел текучести стали 40Х (Ст 40Х, сталь конструкционная легированная, хромистая, ГОСТ 4543-71): для проката размером 25 мм после термообработки (закалка+отпуск) – предел текучести стали 40Х не менее 785 Н/мм 2 или 80 кгс/мм 2 .
Предел текучести стали 09Г2С (ГОСТ 5520-79, лист, сталь 09Г2С конструкционная низколегированная для сварных конструкций, кремнемарганцовистая). Минимальное значение предела текучести стали 09Г2С для стального проката в зависимости от толщины листа меняется от 265 Н/мм 2 (27 кгс/мм 2 ) до 345 Н/мм 2 (35 кгс/мм 2 ). Для повышенных температур минимальное требуемое значение предела текучести стали 09Г2С составляет: для Т=250°C – 225 (23); для Т=300°C – 196 (20); Т=350°C – 176 (18); Т=400°C – 157 (16).
Предел текучести стали 3. Сталь 3 (углеродистая сталь обыкновенного качества, ГОСТ 380—2005) изготавливается следующих марок: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп. Предел текучести стали 3 регламентируется отдельно для каждой марки. Так, например, требования к пределу текучести Ст3кп, в зависимости от толщины проката, меняются от 195-235 Н/мм 2 (не менее).
Текучесть расплава
Текучесть расплава металла – это способность расплавленного металла заполнять литейную форму. Текучесть расплава для металлов и металлических сплавов – то же что и жидкотекучесть. (См. Литейные свойства сплавов).
Текучесть жидкости вообще и расплава в частности есть величина, обратная динамической вязкости. В Международной системе единиц (СИ) текучесть жидкости выражается в Па -1 *с -1 .
Подготовлено: Корниенко А.Э. (ИЦМ)
Лит.:
- Штремель М.А. Прочность сплавов. Часть II. Деформация: Учебник для вузов. – М.:*МИСИС*, 1997. – 527 с.
- Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. – 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. – 199 с.: ил. – (Профтехобразование). – ББК 34.2/ Ж 86/ УДЖ 620.1
- Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. ISBN 5-217-00241-1
- Бобылев А.В. Механические и технологические свойства металлов. Справочник. – М.: Металлургия, 1980. 296 с.
- Белянкин Ф.П. Энергетический предел текучести металлов. // Сборник Института строительной механики АН УССР. №9, 1948.152
Конкурс “Я и моя профессия: металловед, технолог литейного производства”. Узнать, участвовать >>>
21. Чем характеризуются пластические свойства арматурных сталей? что такое физический предел текучести стали, условный предел текучести?
Пластические свойства арматурной стали характеризуются относительным удлинением при ее испытании на длительные деформации удлинения
Пределом текучести (физическим) Sт называется напряжение, при котором в материале начинают интенсивно накапливаться остаточные (пластические) деформации, причем этот процесс идет при практически постоянном напряжении.
При отсутствии площадки текучести (см. рисунок) определяют условный предел текучести.
Основные механические свойства сталей характеризуются диаграммой «напряжения—деформации», получаемой путем испытания на растяжение стандартных образцов. Все арматурные стали по характеру диаграмм «-» подразделяются на:
1) стали с явно выраженной площадкой текучести (мягкие стали);
2) стали с неявно выраженной площадкой текучести (низколегированные, термически упрочненные стали);
3) стали с линейной зависимостью «-» почти до разрыва (высокопрочная проволока).
Основные прочностные характеристики:
для сталей вида 1 — физический предел текучести у;
для сталей видов 2 и 3— условный предел текучести 0,2, принимаемый равным напряжению, при котором остаточные деформации составляют 0,2 %, и условный предел упругости0,02, при котором остаточные деформации 0,02 %.
Помимо этого характеристиками диаграмм являются предел прочности su(временное сопротивление) и предельное удлинение при разрыве, характеризующее пластические свойства стали.(СМ РИС)
Малые предельные удлинения могут послужить причиной хрупкого обрыва арматуры под нагрузкой и разрушения конструкции; высокие пластические свойства сталей создают благоприятные условия для работы железобетонных конструкций. В зависимости от типа конструкций и условий эксплуатации наряду с основной характеристикой — диаграммой «-» в ряде случаев необходимо учитывать другие свойства арматурных сталей: свариваемость, реологические свойства, динамическое упрочнение и т. п.Под свариваемостью понимают способность арматуры к надежному соединению с помощью электросварки без трещин. Реологические свойства характеризуются ползучестью и релаксацией. Ползучесть арматурных сталей проявляется лишь при больших напряжениях и высоких температурах. Гораздо опаснее релаксация – падение напряжений во времени при неизменной длине образца (отсутствии деформаций).
22. В чем различие работы железобетонных конструкций, армированных мягкими сталями и высокопрочной арматурой. Причины появления предварительно напряженных конструкций.
“Мягкая” арматура (классы А-I, A-II, A-III) на диаграмме растяжения (1) имеет три главных участка: упругие деформации (здесь действует закон Гука), площадку текучести при напряжениях pl (предел текучести) и упруго-пластические деформации (криволинейный участок). При проектировании конструкций используют первый и второй участки. Текучесть стали в той или иной степени учитывают в расчетах нормальных сечений на изгиб (при слабом армировании, при многорядном расположении арматуры и т.д.), в расчетах статически неопределимых конструкций по методу предельного равновесия и в других случаях. Третий участок в расчетах не участвует – деформации там столь велики, что в реальных условиях они соответствуют уже разрушению конструкций.
“Твердая”, или высокопрочная арматура (классы А-IV, Ат-IV и вы-ше, B-II, Bp-II, K-7, K-19) не имеет физического предела текучести (2,3), она деформируется упруго до предела пропорциональности, а далее диаграмма постепенно искривляется.
У “твердых” сталей прочность выше, чем у “мягких”, но зато меньше удлинения при разрыве , т.е. у них хуже пластические свойства, они более хрупкие. “Мягкая” и “твердая” сталь – понятия, разумеется, условные и в официальных документах отсутствуют, но они очень удобны в обиходе, потому их широко используют в научно-технической литературе.
При предварительном напряжении растянутой под нагрузкой арматуры возникает предварительно напряженное состояние. Растягивающие напряжения в сжатой от внешней нагрузки зоне достаточно велики. В нижней зоне возникают сжимающие напряжения большой величины, поэтому эпюра носит нелинейный характер.
В процессе приложения нагрузки, сжимающие напряжения гасятся растягивающими, от внешней нагрузки.
После того, как растягивающие напряжения от внешней нагрузки превысят сжимающие от предварительного напряжения элемент работает по 2-й стадии, как обычный, но с большей несущей способностью. Третья стадия аналогична обычному железобетонному элементу.(СМ РИС)
Причины использования преднапряженных конструкций:
В предварительно напряженных конструкциях представляется возможность использовать высокоэкономичную стержневую арматуру повышенной прочности и высокопрочную проволочную арматуру, позволяющих в среднем до 50% сокращать расход дефицитной стали в строительстве.
Предварительное обжатие растянутых зон бетона значительно отдаляет момент образования трещин в растянутых зонах элементов, ограничивает ширину их раскрытия и повышает жесткость элементов, практически не влияя на их прочность.
Предварительно напряженные конструкции часто оказываются экономичными для зданий и сооружений с такими пролетами, нагрузками и условиями работы, при которых применение железобетонных конструкций без предварительного напряжения технически невозможно или вызывает чрезмерно большой перерасход бетона и стали для обеспечения требуемой жесткости и несущей способности конструкций.
Предварительное напряжение, увеличивающее сопротивление конструкций образованию трещин, повышает их выносливость при работе на воздействие многократно повторяющейся нагрузки. Это объясняется уменьшением перепада напряжений в арматуре и бетоне, вызываемого изменением величины внешней нагрузки. Правильно запроектированные предварительно напряженные конструкции безопасны в эксплуатации, так как показывают перед разрушением значительные прогибы, предупреждающие об аварийном состоянии конструкций.
Таблица предела текучести сталей
Для быстрого поиска марки стали и её предела текучести нажмите Ctrl+F.
Важно! Предел текучести той или иной марки стали может изменяться от типа термообработки и температуры. Если необходима точная информация о пределе текучести стали, то её можно узнать в сопроводительной документации к конкретному составу, марке или сплаву.
Марка | Предел текучести, МПа |
Сталь Ст0 | 190 |
Сталь Ст1 | 190 |
Сталь Ст2 | 220 |
Сталь СтЗ | 240 |
Сталь Ст4 | 260 |
Сталь Ст5 | 280 |
Сталь Ст6 | 310 |
‘);> //–>
‘);> //–>
Сталь 08 | 200 |
Сталь 10 | 210 |
Сталь 15 | 230 |
Сталь 20 | 250 |
Сталь 25 | 280 |
Сталь 30 | 300 |
Сталь 35 | 320 |
Сталь 40 | 340 |
Сталь 45 | 360 |
Сталь 50 | 380 |
Сталь 20Г | 280 |
Сталь З0Г | 320 |
Сталь 40Г | 360 |
Сталь 50Г | 400 |
Сталь 65Г | 440 |
Сталь 10Г2 | 250 |
Сталь 09Г2С | 350 |
Сталь 10ХСНД | 400 |
Сталь 20Х | 300 |
Сталь 30Х | 320 |
Сталь 40Х | 330 |
Сталь 45Х | 350 |
Сталь 50Х | 350 |
Сталь 35Г2 | 370 |
Сталь 40Г2 | 390 |
Сталь 45Г2 | 410 |
Сталь 33ХС | 300 |
Сталь 38ХС | 750 |
Сталь 18ХГТ | 430 |
Сталь 30ХГТ | 1050 |
Сталь 20ХГНР | 1200 |
Сталь 40ХФА | 750 |
Сталь 30ХМ | 750 |
Сталь 35ХМ | 850 |
Сталь 40ХН | 400 |
Сталь 12ХН2 | 600 |
Сталь 12ХНЗА | 700 |
Сталь 20Х2Н4А | 450 |
Сталь 20ХГСА | 650 |
Сталь 30ХГС | 360 |
Сталь 30ХГСА | 850 |
Сталь 38Х210 | 700 |
Сталь 50ХФА | 1100 |
Сталь 60С2 | 1200 |
Сталь 60С2А | 1400 |
Сталь ШХ15 | 380 |
Сталь 20Л | 215 |
Сталь 25Л | 235 |
Сталь 30Л | 255 |
Сталь 35Л | 275 |
Сталь 45Л | 315 |
Сталь 50Л | 335 |
Сталь 20ГЯ | 275 |
Сталь 35ГЛ | 295 |
Сталь 30ГСЛ | 345 |
Сталь 40ХЛ | 490 |
Сталь 35ХГСЛ | 345 |
Сталь 35ХМЛ | 390 |
Сталь 12Х13 | 350 |
Сталь 12Х14Н14В2М | 260 |
Сталь Х23Н13 | 295 |
Сталь Х23Н18 | 200 |
Сталь 12Х18Н10Т | 200 |
Сталь 08Х18Н10Т | 210 |
На этой странице представлена подробная таблица пределов текучести различных марок сталей. Таблица периодически пополняется новыми данными.
Арматурная сталь
Основными показателями свойств арматурной стали являются:
- Предел текучести (физический) σу, МПа.
- Для сталей, не имеющих физического предела текучести, определяется предел текучести (условный) σ0,2, МПа — напряжение, при котором остаточное удлинение достигает 0,2% от длины участка образца. Определяют его тогда, когда при растяжении образца не обнаруживается ярко выраженного предела текучести (твердые стали).
- Временное сопротивление (предел прочности) σи, МПа.
- Относительное удлинение после разрыва ε — процентное отношение длины образца после разрыва к его первоначальной длине.
Проводя испытание образца, нагрузку на него увеличивают постепенно, ступенями. Начальную ступень нагружения следует принимать 5-10% от ожидаемой максимальной нагрузки. Каждая ступень должна составлять не более 20% от нормативной нагрузки. В конце каждой ступени увеличение нагрузки на образец приостанавливают. Под действием этой нагрузки образец находится не менее 10 мин. Доведя нагрузку до нормативного значения, образец выдерживается 30 мин. Эти выдержки необходимы для выяснения закономерности приращения перемещений и деформаций.
После достижения нагрузкой полуторной величины нормативного значения, дальнейшее увеличение ведут ступенями вдвое меньшими, давая после каждой ступени выдержку не менее 15 мин. Такой порядок дает возможность более точно установить величину предельной (разрушающей) нагрузки.
Деформации рекомендуется замерять приборами до достижения нагрузкой величины не более чем 1,25 от нормативной величины. После этого приборы снимаются. Это делается с целью избежания порчи приборов.
Начальная расчетная длина цилиндрических образцов из необработанной арматурной стали назначается равной десяти начальным (до испытания) диаметрам арматурного стержня.
Измерение начальной и конечной (длина расчетной части после разрыва образца) расчетных длин, а также диаметра необработанного образца производится с точностью 0,1 мм. До появления деформации образца перемещение подвижного захвата происходит без нарастания или с небольшим увеличением нагрузки, которая необходима для устранения зазора как в механизме машины, так и между образцами и захватами. Поэтому на диаграмме в самом начале испытания появляется сначала горизонтальный, а затем криволинейный участок. При начальной нагрузке, составляющей 10% от разрывного усилия, на образец наносят две риски. Расстояние между рисками является начальной расчетной длиной образца.
В продолжение всего испытания ведется наблюдение за поведением образца по диаграмме, вычерчиваемой записывающим прибором разрывной машины.
По оси ординат диаграммы откладываются напряжения σ, а по оси абсцисс относительные деформации образца ε, представляющие отношение удлинения образца к его первоначальной длине (рис. ниже). Криволинейный участок в начале диаграммы рассматривать не следует, поэтому продолжаем прямолинейный отрезок диаграммы до оси абсцисс и получаем точку О — начало диаграммы.
На диаграмме (рис. ниже) можно выделить три участка работы стали: 1 — участок упругой работы; 2 — участок пластической работы; 3 — участок упруго-пластической работы. В большинстве простейших расчетов считается, что сталь работает в пределах первого участка упруго, т. е. напряжения в элементах ограничиваются пределом текучести — σу. Соответственно, нормативные и расчетные сопротивления, необходимые для расчета конструкций, принимаются по пределу текучести.
Диаграмма растяжения мягкой стали
Прямолинейный участок 1 диаграммы (деформации растут пропорционально напряжениям о) переходит в кривую (небольшой отрезок между участками 1 и 2), т. е. деформации растут быстрее увеличения нагрузки, а от начальной точки («критической точки») участка 2 деформации увеличиваются без увеличения нагрузки (материал «течет»).
При напряжениях, близких к временному сопротивлению σи, продольные и поперечные деформации концентрируются в наиболее слабом месте, и в образце образуется шейка. Площадь поперечного сечения в шейке интенсивно уменьшается, что приводит к увеличению напряжений в месте сужения. В связи с этим, несмотря на то что нагрузка на образец снижается, в месте образования шейки нарушаются силы межатомного сцепления и происходит разрыв.
Напряжения (рис. выше) получают путем деления нагрузки на первоначальную площадь сечения. Истинная диаграмма растяжения (при напряжениях с учетом уменьшения площади сечения) не имеет нисходящей части.
При проведении опытов на растяжение площадь поперечного сечения стержней периодического профиля с необработанной поверхностью можно определить по формуле
где G — вес образца стержня периодического профиля, Н; L —длина образца, см.
Площадка текучести свойственна сталям с содержанием углерода 0,1-0,3%. При меньшем значении углерода перлитовых включений мало, отчего отсутствует сдерживающее влияние на развитие сдвигов в зернах феррита.
В высокопрочных сталях при большом числе включений развитие сдвигов полностью блокируется и явно выраженная площадка текучести отсутствует, т. е. материал не имеет физического предела текучести, необходимо определить величину условного предела текучести как напряжения, соответствующего остаточному удлинению Δε0,2 = 0,2% ε, где ε — удлинение образца.
Условный предел текучести для такой стержневой арматуры σ0,2 устанавливается по остаточному удлинению, равному 0,2%, и должен составлять не менее 80% браковочного значения предела прочности для каждого вида арматуры (рис. ниже). Откладывая величину Δε0,2 в соответствующем масштабе на оси абсцисс диаграммы растяжения, проводим наклонную линию ВС параллельно ОА до пересечения с кривой растяжения. Точка В определяет нагрузку σ0,2, соответствующую условному пределу текучести.
Диаграмма растяжения стали, не имеющей площадки текучести
За площадкой текучести кривая (рис. выше) опять идет вверх, нагрузка снова начинает расти и в самой верхней точке достигает своего наибольшего значения (σмакс — разрушающая нагрузка), после чего вновь уменьшается до момента разрыва образца.
Относительное удлинение вычисляется по формуле
где Lk — длина образца после разрыва (конечная длина), мм; L — расчетная начальная длина образца, мм.
Чтобы измерить длину образца после разрыва, обе его части складываются по длине и штангенциркулем измеряют расстояние между рисками, соответствующими принятой расчетной длине.
Помимо основных характеристик σy, σu, ε, определяемых по результатам испытаний на растяжение, важными показателями арматурных сталей являются отношения предела текучести к временному сопротивлению и предела пропорциональности к пределу текучести.
Отношение σy/σu характеризует резерв прочности стали. В арматурных сталях обычной и повышенной прочности это отношение близко к 0,6, что свидетельствует о достаточно большом резерве работы материала и позволяет использовать в широких пределах пластические свойства стали. Для высокопрочных арматурных сталей предел текучести близок к временному сопротивлению σ0,2/σu=О,8-0,9, что ограничивает использование работы материала в упругопластической стадии.
Модуль упругости арматурной стали Es. Так как арматурная сталь работает в упругопластических условиях, расчетные значения модуля деформации (упругости) ее принимают равными их нормативным значениям или в,зависимости от класса арматурной стали по таблице ниже.
Модули упругости арматурной стали, МПа
А240, А300, А400, А500, А600, А800, А1000, В500, Bp 1200, Вр1300, Вр1400, Bp1500