Аустенитные стали марки

Какие стали относятся к аустенитным, и какими свойствами они обладают

В энергетическом машиностроении, на предприятиях химической и нефтяной промышленности элементы оборудования, находящиеся в прямом контакте с агрессивными средами, должны быть выполнены из специального материала, который способен выдерживать негативное воздействие. Согласно современным технологиям, используются аустенитные стали, марки их выбираются в соответствии с производственными задачами.

Это высоколегированный материал, который в процессе кристаллизации формирует 1-фазную структуру. Его характеризует гранецентрированная кристаллическая решетка, которая сохраняется и при криогенных температурах – ниже -200 градусов С. Материал характеризуется повышенным содержанием никеля, марганца и некоторых других элементов, способствующих стабилизации при различных температурах. Аустенитные стали классифицируют на 2 группы относительно состава:

  • материал на основании железа, в котором хрома до 15%, а никеля – до 7%, общее число легирующих элементов не должно превышать 55%;
  • материал на основании никеля, когда его содержание 55% и выше, или на основе железоникелевой, когда содержание этих компонентов 65% и выше, а соотношение железа и никеля находятся в пропорции 1 к 1 ½ соответственно.

Содержание никеля в этих железных сплавах необходимо для увеличения технологичности, стойкости и прочности к жару, увеличению параметров пластичности. Хром увеличивает стойкость к коррозии и высоким температурам. Другие легирующие добавки способны сформировать и другие уникальные свойства, которыми должна обладать аустенитная нержавеющая сталь в тех или иных технологических условиях. В отличие от других материалов этот железный сплав не имеет трансформаций при снижении и повышении температур. Поэтому температурная обработка его не применяется.

Классификация аустенитных сталей по группам и маркам

Какие стали относятся к аустенитным сталям принято классифицировать на три группы:

  • Коррозионностойкие. В этих железных сплавах содержание хрома варьируется от 12 до 18%, никеля – от 8 до 30%, углерода – от 0,02 до 0,25%. Современной промышленности они известны с 1910 года, когда их разработал инженер из Германии Штраус. В сравнении с хромистыми железными сплавами этот материал отличается повышенной коррозионной стойкостью, которую сохраняет при нагревании, чему способствует лимитированное содержание углерода. Коррозионностойкие аустенитные стали производятся согласно ГОСТ5632-72. К этой группе относятся такие марки: хромоникелевые – 08Х18Н10, 12Х18Н10Т, 06Х18Н11 и другие, с марганцевыми добавками – 10Х14Г14Н4Т, 07Х21Г7АН5 и другие, хромоникельмолибденовые – 08Х17Н13М2Т, 03Х16Н16ЬЗ и другие, высококремнистые – 02Х8Н22С6, 15Х18Н12С4Т10 и другие.
  • Жаропрочные и жаростойкие. Это сплавы с ГЦК-решеткой, в сравнении с материалами, имеющими ОЦК-решетку, они характеризуются более значительными показателями жаростойкости. Преимущественно их используют для производства печных установок. Из этого материала изготавливают клапаны агрегатов, работающих на дизельном топливе, лопаточные элементы турбин, роторные модули и диски. Некоторые марки способны выдерживать температуры до 1100 градусов С. Для усиления параметров жаропрочности в материал добавляют бор, вольфрам, ниобий, ванадий или молибден. К этой группе принадлежат такие марки, как: 08Х16Н9М2, 10Х14Н16Б, 10Х18Н12Т, 10Х14Н14В2БР и другие.
  • Хладостойкие. Этот железный спав незаменим в технологических процессах, протекающих при криогенных температурах. В его составе содержание хрома варьируется от 17 до 25%, а никеля – от 8 до 25%. Этот материал сохраняет вязкость и пластичность в расширенном диапазоне рабочих температур. Для него характерна хорошая технологичность и высокая стойкость к коррозии. Недостатками этого железного сплава являются: пониженная прочность при нормальных температурах, особенно это проявляется по границе текучести, а также значительная стоимость из-за наличия в составе дорого металла никеля. Наиболее востребованы марки этой группы: 03Х20Н16АГ6 и 07Х13Н4АГ20.Аустенитные стали имеют ряд особых преимуществ и могут применяться в рабочих средах, отличающихся значительной агрессивностью. Без таких сплавов не обойтись в энергетическом машиностроении, на предприятиях нефтяной и химической промышленности.

    Аустенитные стали — это стали с высоким уровнем легирования, при кристаллизации образуется однофазная система, характеризуемая кристаллической гранецентрированной решеткой. Такой тип решеток не меняется даже под воздействием очень низких температур (около 200 градусов Цельсия). В отдельных случаях имеется еще одна фаза (объем в сплаве не превышает 10 процентов). Тогда решетка получится объемноцентрированной.

    Описание и характеристики

    Стали разделяют на две группы относительно состава их основы и содержания легирующих элементов, таких как никель и хром:

    • Композиции, в основе которых содержится железо: никель 7%, хром 15%; общее количество добавок — до 55%;
    • Никелевые и железоникелевые композиции. В первой группе содержание никеля начинается от 55% и больше, а во второй — от 65 и больше процентов железа и никеля в соотношении 1:5.

    Благодаря никелю можно добиться повышенной пластичности, жаропрочности и технологичности стали, а с помощью хрома — придать требуемую коррозийность и жаростойкость. А добавление других легирующих компонентов позволит получать сплавы с уникальными свойствами. Компоненты подбирают в соответствии со служебным предназначением сплавов.

    Для легирования преимущественно используют:

    • Ферритизаторы, стабилизирующие структуру аустенитов: ванадий, вольфрам, титан, кремний, ниобий, молибден.
    • Аустенизаторы, представленные азотом, углеродом и марганцем.

    Все перечисленные компоненты расположены не только в избыточных фазах, но и в твердом растворе из стали.

    Сплавы, устойчивые к коррозии и перепадам температур

    Широкий спектр добавок позволяет создать особые стали, которые будут применены для изготовления компонентов конструкций и будут работать в криогенных, высокотемпературных и коррозионных условиях. Поэтому составы разделяют на три типа:

    • Жаропрочные и жаростойкие.
    • Стойкие к коррозии.
    • Устойчивы к воздействию низких температур.

    Жаростойкие сплавы не разрушаются под влиянием химикатов в агрессивных средах, могут использоваться при температуре до +1150 градусов. Из них изготавливают:

    • Элементы газопроводов;
    • Арматуру для печей;
    • Нагревательные компоненты.

    Жаропрочные марки на протяжении длительного времени могут оказывать сопротивление нагрузкам в условиях повышенных температур, не теряя высоких механических характеристик. При легировании используются молибден и вольфрам (на каждое дополнение может отводиться до 7%). Для измельчения зерен в небольших количествах применяется бор.

    Аустенитные нержавеющие стали (стойкие к коррозии) характеризуются незначительным содержанием углерода (не более 0,12%), никеля (8−30%), хрома (до 18%). Проводится термическая обработка (отпуск, закалка, отжиг). Она важна для изделий из нержавейки, ведь дает возможность хорошо держаться в самых разных агрессивных средах — кислотных, газовых, щелочных, жидкометаллических при температуре 20 градусов и выше.

    У хладостойких аустенитных композициях содержится 8−25% никеля и 17−25% хрома. Применяют в криогенных агрегатах, но стоимость производства существенно возрастает, потому используются очень ограниченно.

    Свойства термической обработки

    Жаростойкие и жаропрочные марки могут подвергаться разным типам тепловой обработки, чтобы нарастить полезные свойства и модифицировать уже имеющуюся структуру зерен. Речь идет о числе и принципе распределения дисперсных фаз, величине блоков и собственно зерен и тому подобное.

    Отжиг такой стали помогает уменьшить твердость сплава (иногда это важно при эксплуатации), а также устранить излишнюю хрупкость. В процессе обработки металл нагревается до 1200 градусов на протяжении 30−150 минут, потом его необходимо как можно быстрее охладить. Сплавы со значительным количеством легирующих элементов, как правило, охлаждаются в маслах или на открытом воздухе, а более простые — в обычной воде.

    Нередко проводится двойная закалка. Сначала выполняют первую нормализацию составов при температуре 1200 градусов, затем следует вторая нормализация при 1100 градусах, что позволяет значительно увеличить пластические и жаропрочные показатели.

    Добиться повышения жаропрочности и механической прочности можно в процессе двойной термической обработки (закалка и старение). До эксплуатации проводится искусственное старение всех жаропрочных сплавов (то есть выполняется их дисперсионное твердение).

    Аустенитные стали

    Аустенит — это твердый однофазный раствор углерода до 2 % в y-Fe. Главная его особенность заключается в последовательности, в которой располагаются атомы, т. е. в строении кристаллической решетки. Она бывает 2 типов:

    1. ОЦК a-железо (объемно – центрированная – по одному атому располагается в 8-ми вершинах куба и 1 в центре).
    2. ГЦК y-железо (гране-центрированная по одному атому находится в 8-ми вершинах куба и по одному находятся на каждой из 8-ми граней, всего 16 атомов).

    Простыми словами: аустенит — это структура или состояние металла, определяющая его технические характеристики, которые получить в другом состоянии невозможно, т.к. меняя строение, металл изменяет и свойства. Без аустенита невозможна такая технология как закалка, которая является самой распространенной, дешевой, технически доступной, а в некоторых случаях и единственной технологией упрочнения металла.

    Свойства аустенитных сталей и где их используют

    Само состояние железа в Y-фазе (аустенит) уникально, благодаря ему металл является жаропрочным (+850 ºC), холодостойким (-100 ºC и ниже t), способен обеспечивать коррозионную и электрохимическая стойкость и другие важнейшие свойства, без которых были бы немыслимы многие технологические процессы в:

    • нефтеперерабатывающей и химической отраслях;
    • медицине;
    • космическом и авиастроении;
    • электротехнике.

    Жаропрочность — свойство стали не менять своих технических свойств при критических температурах с течением времени. Разрушение происходит при неспособности металла противостоять дислокационной ползучести, т. е. смещению атомов на молекулярном уровне. Постепенно происходит разупрочнение, и процесс старения металла начинает происходить все быстрее. Это происходит с течением времени при низких или высоких температурах. Так вот, насколько этот процесс растянется во времени — это и есть способность металла к жаропрочности.

    Коррозионная стойкость — способность металла противостоять разрушению (дислокационной ползучести) не только с течением времени и при криогенных и высоких температурах, но еще и в агрессивных средах, т. е. при взаимодействии с веществами активно вступающих в реакцию с одним или несколькими компонентных элементов. Разделяют 2 типа коррозии:

    1. химическая — окисление металла в таких средах, как газовая, водная, воздушная;
    2. электрохимическая — растворение металла в кислотных средах, имеющих положительно или отрицательно заряженные ионы. При разности потенциалов между металлом и электролитом, происходит неизбежная поляризация, приводящая к частичному взаимодействию двух веществ.

    Холодостойкость — способность сохранять структуру при криогенных температурах с течением длительного времени. Из-за искажения кристаллической решетки структура стали холодостойкой способна принимать строение присущее обычным малолегированным сталям, но уже при очень низких температурах. Но этим сталям присущ один недостаток — иметь полноценные свойства они могут только при минусовых температурных значениях, t – ≥ 0 для них недопустимы.

    Методы получения аустенита

    Аустенит — это структура металла, которая в малолегированных марках возникает в диапазоне температур 550-743 ºC. Как можно сохранить эту структуру и, соответственно, свойства за границами этих t? — Ответ: методом легирования. При наполнении решетки аустенита атомами других элементов, образуются структурные искажения, а процесс восстановления ОЦК–решетки (естественное строение при нормальных температурах) сдвигается на сотни градусов.

    Как эти свойства проявляются и в каком состоянии, зависит от добавочных т. е. легирующих элементов и термической обработки детали, которую она может дополнительно получать. Причем влияют не только элементы, но их соотношение, так аустенитная сталь подразделяется на:

    • хромомарганцевую и хромникельмарганцевую (07Х21Г7AН5, 10X14AГ15, 10X14Г14H4T);
    • хромоникелевую (08Х18Н12Б, 03Х18Н11, 08X18H10T, 06X18Н11, 12X18H10T, 08X18H10;
    • высококремнистую (02Х8Н22С6, 15Х18Н12C4Т10);
    • хромоникельмолибденовую (03Х21Н21М4ГБ, 08Х17Н15М3Т, 08X17Н13M2T, 03X16H15M3, 10Х17Н13М3Т).

    Химические элементы и их влияние на аустенит

    Пособников у аустенита немного, использоваться они могут как совместно, так и частично, в зависимости от того какие свойства нужно получить:

    • Хром — при его содержании более 13 % на поверхности образует оксидную пленку, толщиной 2-3 атома, которая исключает коррозию. В аустените хром находится свободном состоянии, при условии минимального содержания углерода, так как тот сразу образует карбид Cr23C6, что приводит к сегрегации хрома и обедняет большие участки матрицы, делая ее доступной для окисления, сам карбид Cr23C6 способствует межкристаллитной коррозии аустенита.
    • Углерод (максимальное его значение не более 10 %). Углерод в аустените находится в соединенном состоянии, основная его задача — образование карбидов, которые обладают предельной прочностью.
    • Никель — основной элемент, который стабилизирует желаемую структуру. Достаточно содержание 9-12 %, чтобы перевести сталь в аустенитный класс. Измельчает и сдерживает рост зерна, что обеспечивает высокую пластичность;
    • Азот заменяет атомы углерода, присутствие которых в сталях электрохимически стойких снижено до 0,02 %;
    • Бор — уже в тысячных процентах увеличивает пластичность, в аустените, измельчая его зерно;
    • Кремний и марганец не указываются как основные легирующие элементы в маркировке, но они являются основными или обязательными легирующими элементами аустенита, которые придают прочность и стабилизируют структуру.
    • Титан и ниобий — при температуре выше 700 °С карбид хрома распадается и образуется стойкий TiC и NiC, который не вызывает межкристаллитную коррозию, но их использование не всегда оправданно холодостойких сталях, т.к. оно повышает границу распада аустенита.

    Термическая обработка

    Аустенит подвергают обработке только по необходимости. Основные операции это высокотемпературный отжиг (1100-1200 °С в течение 0,5-2,5 часа) при котором устраняется хрупкость. Далее закалка с охлаждением в масле или на воздухе.

    Аустенитную сталь, легированную алюминием, подвергают двойной закалке и двойной нормализации:

    Механическая окончательная обработка проводится до закалки, но после отжига.

    Изделия из аустнитных сталей

    Полуфабрикаты, в которых поставляется сталь, представляет собой:

    • Листы, толщиной 4-50 мм с гарантированным химическим составом и механическими свойствами.
    • Поковки. Ввиду сложной обработки этих сталей методом сварки, изготовление некоторых деталей представляет собой получение практически готовых изделий уже на этапе литья. Это роторы, диски, турбины, трубы двигателей.

    Методы соединения аустенита:

    • Припой – очень сильно ограничивает использование металла при t более 250 °С;
    • Сваривание – возможно в защитной атмосфере (газовой, флюсовой), при последующей термической обработке.
    • Механическое соединение – болты и другие крепежные элементы, изготовленные из аналогичного материала.

    Аустенитные стали одни из самых дорогих технических сталей, использование которых ограничивается узкой специализацией оборудования.

    В чём разница?

    Разница между аустенитной и мартенситной нержавеющей сталью

    Ключевое различие между аустенитной и мартенситной нержавеющей сталью заключается в том, что кристаллическая структура аустенитной нержавеющей стали представляет собой гранецентрированную кубическую структуру, тогда как кристаллическая структура мартенситной нержавеющей стали представляет собой объемно-центрированную кубическую структуру.

    Существует четыре основных группы нержавеющей стали в зависимости от кристаллической структуры стали: аустенитная, ферритная, мартенситная и двухфазная. М икроструктура этих сплавов зависит от присутствующих в них легирующих элементов. Т аким образом, эти сплавы также имеют различные легирующие элементы.

    Содержание

    1. Обзор и основные отличия
    2. Что такое Аустенитная нержавеющая сталь
    3. Что такое Мартенситная нержавеющая сталь
    4. В чем разница между аустенитной и мартенситной нержавеющей сталью
    5. Заключение

    Что такое аустенитная нержавеющая сталь?

    Аустенитная нержавеющая сталь — это форма сплава нержавеющей стали, которая обладает исключительной коррозионной стойкостью и впечатляющими механическими свойствами. Первичная кристаллическая структура этого сплава представляет собой гранецентрированную кубическую структуру, в которой содержится «аустенит» (металлический и немагнитный аллотроп железа или твердый раствор железа с легирующим элементом).

    Кроме того, этот материал имеет лучшую прочность, ударную вязкость, формуемость и пластичность. Аустенитная нержавеющая сталь применяется в криогенных (низких) и высокотемпературных устройствах. Э та сталь имеет гранецентрированную кубическую структуру, в которой есть один атом в каждом углу куба, и есть один атом в каждой грани (в центре грани). Аустенитная с труктура образуется, когда достаточное количество никеля смешивается с железом и хромом. Обычно этот материал содержит около 15% хрома и от 8 до 10% никеля.

    Что такое мартенситная нержавеющая сталь?

    Мартенситная нержавеющая сталь — это сплав, который содержит больше хрома и обычно не содержит никеля. И этот материал может быть или высокоуглеродистой или низкоуглеродистой сталью. Кроме того, он содержит 12% железа, 17% хрома и 0,10% углерода. Примечательными свойствами этого материала являются высокие механические свойства и износостойкость.

    Кристаллическая структура мартенситной нержавеющей стали представляет собой объемно-центрированную кубическую структуру. Здесь каждый угол куба содержит атомы, и в центре куба есть один атом. В составе этой стали никель отсутствует. Кроме того, этот материал является ферромагнитным, отверждаемым при термообработке, меньшей коррозионной стойкостью и т.д.

    Структура мартенситной нержавеющей стали

    В чем разница между аустенитной и мартенситной нержавеющей сталью?

    Аустенитная нержавеющая сталь — это форма сплава нержавеющей стали, которая обладает исключительной коррозионной стойкостью и впечатляющими механическими свойствами, в то время как мартенситные нержавеющие стали — это сплав, в котором больше хрома и обычно в нем нет никеля. Ключевое различие между аустенитной и мартенситной нержавеющей сталью состоит в том, что кристаллическая структура аустенитной нержавеющей стали представляет собой гранецентрированную кубическую структуру, тогда как для мартенситной нержавеющей стали это объемно-центрированная кубическая структура.

    Кроме того, еще одно различие между аустенитной и мартенситной нержавеющей сталью состоит в том, что аустенитная нержавеющая сталь содержит никель, а мартенситная нержавеющая сталь — нет. Содержание никеля в аустенитной нержавеющая стали составляет от 8 до 10%. Кроме того, аустенитная нержавеющая сталь является диамагнитной, а мартенситная форма — ферромагнитной.

    Заключение — Аустенитная и мартенситная нержавеющая сталь

    Аустенитная нержавеющая сталь — это тип сплава нержавеющей стали, которая обладает исключительной коррозионной стойкостью и впечатляющими механическими свойствами, в то время как мартенситные нержавеющие стали — это сплав, в котором больше хрома и обычно в нем нет никеля. Ключевое различие между аустенитной и мартенситной нержавеющей сталью состоит в том, что кристаллическая структура аустенитной нержавеющей стали является гранецентрированной кубической структурой, тогда как кристаллическая структура мартенситной нержавеющей стали является объемно-центрированной кубической структурой.

    Читать еще:  Производство изделий из нержавеющей стали
Ссылка на основную публикацию
Adblock
detector