Тугоплавкие металлы список
Тугоплавкие металлы – характеристики, свойства и применение
Еще с конца 19 века были известны тугоплавкие металлы. Тогда им не нашлось применения. Единственная отрасль, где их использовали, была электротехника и то в очень ограниченных количествах. Но все резко поменялось с развитием сверхзвуковой авиации и ракетной техники в 50-е года прошлого столетия. Производству потребовались новые материалы, способные выдерживать значительные нагрузки в условиях температур свыше 1000 ºC.
Список и характеристики тугоплавких металлов
Тугоплавкость характеризуется повышенным значением температуры перехода из твердого состояния в жидкую фазу. Металлы, плавление которых осуществляется при 1875 ºC и выше, относят к группе тугоплавких металлов. По порядку возрастания температуры плавки сюда входят следующие их виды:
Современное производство по количеству месторождений и уровню добычи удовлетворяют только вольфрам, молибден, ванадий и хром. Рутений, иридий, родий и осмий встречаются в естественных условиях довольно редко. Их годовое производство не превышает 1,6 тонны.
Жаропрочные металлы обладают следующими основными недостатками:
- Повышенная хладноломкость. Особенно она выражена у вольфрама, молибдена и хрома. Температура перехода у металла от вязкого состояния к хрупкому чуть выше 100 ºC, что создает неудобства при их обработке давлением.
- Неустойчивость к окислению. Из-за этого при температуре свыше 1000 ºC тугоплавкие металлы применяются только с предварительным нанесением на их поверхность гальванических покрытий. Хром наиболее устойчив к процессам окисления, но как тугоплавкий металл он имеет самую низкую температуру плавления.
К наиболее перспективным тугоплавким металлам относят ниобий и молибден. Это связано с их распространённостью в природе, а, следовательно, и низкой стоимостью в сравнении с другими элементами данной группы.
Помимо этого, ниобий зарекомендовал себя как металл с относительно низкой плотностью, повышенной технологичностью и довольно высокой тугоплавкостью. Молибден ценен, в первую очередь, своей удельной прочностью и жаростойкостью.
Самый тугоплавкий металл встречаемый в природе – вольфрам. Его механические характеристики не падают при температуре окружающей среды свыше 1800 ºC. Но перечисленные выше недостатки плюс повышенная плотность ограничивают его область использования в производстве. Как чистый металл он применяется все реже и реже. Зато увеличивается ценность вольфрама как легирующего компонента.
Физико-механические свойства
Металлы с высокой температурой плавления (тугоплавкие) являются переходными элементами. Согласно таблице Менделеева выделяют 2 их разновидности:
- Подгруппа 5A – тантал, ванадий и ниобий.
- Подгруппа 6A – вольфрам, хром и молибден.
Наименьшей плотностью обладает ванадий – 6100 кгм3, наибольшей вольфрам – 19300 кгм3. Удельный вес остальных металлов находится в рамках этих значений. Эти металлы отличаются малым коэффициентом линейного расширения, пониженной упругостью и теплопроводностью.
Данные металлы плохо проводят электрический ток, но обладает таким качеством как сверхпроводимость. Температура сверхпроводящего режима составляет 0,05-9 К исходя из вида металла.
Абсолютно все тугоплавкие металлы отличаются повышенной пластичностью в комнатных условиях. Вольфрам и молибден помимо этого выделяются на фоне остальных металлов более высокой жаропрочностью.
Коррозионная стойкость
Жаропрочным металлам свойственна высокая стойкость к большинству видов агрессивных сред. Сопротивление коррозии элементов 5A подгрупп увеличивается от ванадия к танталу. Как пример, при 25 ºC ванадий растворяется в царской водке, между тем как ниобий полностью инертен по отношению к данной кислоте.
Тантал, ванадий и ниобий отличаются устойчивостью к воздействию расплавленных щелочных металлов. При условии отсутствия в их составе кислорода, которые значительно усиливает интенсивность протекания химической реакции.
Молибден, хром и вольфрам имеют большую сопротивляемость к коррозии. Так азотная кислота, которая активно растворяет ванадий, значительно менее воздействует на молибден. При температуре 20 ºC данная реакция вообще полностью останавливается.
Все тугоплавкие металлы охотно вступают в химическую связь с газами. Поглощение водорода из окружающей среды ниобием осуществляется при 250 ºC. Тантал при 500 ºC. Единственный способ остановить эти процессы – проведение вакуумного отжига при 1000 ºC. Стоит заметить, что вольфрам, хром и молибден куда менее склонны к взаимодействию с газами.
Как уже было сказано ранее, лишь хром отличается сопротивляемостью к окислению. Данное свойство обусловлено его способностью образовывать твердую пленку оксида хрома на своей поверхности. Растворение кислорода хромом происходит только при 700 С. У остальных тугоплавких металлов процессы окисления начинаются ориентировочно при 550 ºC.
Хладноломкость
Распространению использования жаропрочных металлов в производстве мешает обладание ими повышенной склонности к хладноломкости. Это означает, что при падении температуры ниже определенного уровня происходит резкое возрастание хрупкости металла. Для ванадия такой температурой служит отметка в -195 ºC, для ниобия -120 ºC, а вольфрама +330 ºC.
Наличие хладноломкости жаропрочными металлами обусловлено содержанием примесями в их составе. Молибден особой чистоты (99,995%) сохраняет повышенные пластические свойства вплоть до температуры жидкого азота. Но внедрение всего 0,1% кислорода сдвигает точку хладноломкости к -20 С.
Области применения
До середины 40-х годов тугоплавкие металлы использовались только как легирующие элементы для улучшения механических характеристик стальных цветных сплавов на основе меди и никеля в электропромышленности. Соединения молибдена и вольфрама применялись также в производстве твердых сплавов.
Техническая революция, связанная с активным развитием авиации, ядерной промышленности и ракетостроения, нашла новые способы использования тугоплавких металлов. Вот неполный перечень новых сфер применения:
- Производство тепловых экранов головного узла и каркасов ракет.
- Конструкционный материал для сверхзвуковых самолётов.
- Ниобий служит материалом сотовой панели космических кораблей. А в ракетостроении его используют в качестве теплообменников.
- Узлы термореактивного и ракетного двигателя: сопла, хвостовые юбки, лопатки турбин, заслонки форсунок.
- Ванадий является основой для изготовления тонкостенных трубок тепловыделяющих элементов термоядерного реактора в ядерной промышленности.
- Вольфрам применяется как нить накаливания электроламп.
- Молибден все шире и шире используется в производстве электродов, применяемых для плавки стекла. Помимо этого, молибден – металл, используемый для производства форм литья под давлением.
- Производство инструмента для горячей обработки деталей.
Оцените статью:
Тугоплавкие металлы
По технической классификации — металлы, плавящиеся при температуре выше 1650—1700 °С; в число Т. м. (таблица) входят Титан Ti, Цирконий Zr, Гафний Hf (IV группа периодической системы), Ванадий V, Ниобий Nb, Тантал Ta (V группа), Хром Cr, Молибден Mo, Вольфрам W (VI группа), Рений Re (VII группа). Все эти элементы (кроме Cr) относятся к редким металлам (См. Редкие металлы), a Re — к рассеянным редким металлам. (Высокой температурой плавления характеризуются также металлы платиновой группы и торий, но они по технической классификации не относятся к Т. м.)
Название | Химический знак | Атомный номер | Внешняя электронная оболочка | Температура плавления |
---|---|---|---|---|
Титан | Ti | 22 | 3d 2 4s 2 | 1688 |
Ванадий | V | 23 | 3d 3 4s 2 | 1900 |
Хром | Cr | 24 | 3d 5 4s 1 | 1903 |
Цирконий | Zr | 40 | 4d 2 5s 1 | 1852 |
Ниобий | Nb | 41 | 4d 4 5s 1 | 2500 |
Молибден | Mo | 42 | 4d 5 5s 1 | 2620 |
Гафний | Gf | 72 | 5d 2 6s 2 | 2222 |
Тантал | Ta | 73 | 5d 3 6s 2 | 2996 |
Вольфрам | W | 74 | 5d 4 6s 2 | 3410 |
Рений | Re | 75 | 5d 5 6s 2 | 3180 |
Т. м. имеют близкое электронное строение атомов и являются переходными элементами (См. Переходные элементы) с достраивающимися d-oболочками (см. табл.). В межатомных связях Т. м. участвуют не только наружные s-электроны, но и d-электроны, что определяет большую прочность межатомных связей и, как следствие, высокую температуру плавления, повышенные механические прочность, твёрдость, электрическое сопротивление. Т. м. имеют близкие химические свойства. Переменная валентность Т. м. обусловливает многообразие их химических соединений; они образуют металлоподобные тугоплавкие твёрдые соединения.
В природе Т. м. в свободном виде не встречаются, в минералах часто изоморфно замещают друг друга: Hf изоморфно ассоциирован с Zr, Ta с Nb, W с Mo; разделение этих пар — одна из весьма трудных задач химической технологии, решаемая обычно методами экстракции (См. Экстракция)или сорбции (См. Сорбция) из растворов либо ректификации (См. Ректификация) хлоридов.
Физические и химические свойства. Кристаллические решётки Т. м. IV группы и Re гексагональные, остальных, а также Ti выше 882 °C, Zr выше 862 °C и Hf выше 1310°C — объёмно-центрированные кубические. Ti, V и Zr — относительно лёгкие металлы, а самые тугоплавкие из всех металлов — Re и W — по плотности уступают лишь Os, lr и Pt. Чистые отожжённые Т. м. — пластичные металлы, поддаются как горячей, так и холодной обработке давлением, особенно хорошо — Т. м. IV и V групп. Для применения Т. м. важно, что благоприятные механические свойства их и сплавов на их основе сохраняются до весьма высоких температур; это позволяет рассматривать их, в частности, как жаропрочные конструкционные материалы. Однако механические свойства Т. м. в значительной мере зависят от их чистоты, степени деформации и условий термообработки. Так, Cr и его сплавы даже при малом содержании некоторых примесей становятся непластичными, a Re, имеющий высокий модуль упругости, подвержен сильному наклёпу, вследствие чего даже при небольшой степени деформации его необходимо отжигать. Особенно сильно на свойства Т. м. влияют примеси углерода (исключая Re), водорода (для металлов IV и V групп), азота, кислорода, присутствие которых делает Т. м. хрупкими. Характерные свойства всех Т. м.— устойчивость к действию воздуха и многих агрессивных сред при комнатной температуре и небольшом нагревании и высокая реакционная способность при больших температурах, при которых их следует нагревать в вакууме или в атмосфере инертных к ним газов. Особенно активны при нагревании Т. м. IV и V групп, на которые действует также водород, причём при 400—900 °C он поглощается с получением хрупких гидридов, а при нагревании в вакууме при 700—1000 °C вновь выделяется; этим пользуются для превращения компактных металлов в порошки путём гидрирования (и охрупчивания) металлов, измельчения и дегидрирования. Т. м. VI группы и Re химически менее активны (их активность падает от Cr к W), они не взаимодействуют с водородом, a Re — и с азотом; взаимодействие Mo с азотом начинается лишь выше 1500 °C, а W — выше 2000 °C. Т. м. способны образовывать сплавы со многими металлами.
Получение. Примерно 80—85% V, Nb, Mo (США, 1973) и значительные количества других Т. м., кроме Hf, Ta и Re, получают из рудных концентратов или технических окислов алюмино- или силикотермическими способами в виде ферросплавов (См. Ферросплавы) для введения в стали с целью легирования (См. Легирование); молибденовые концентраты при этом предварительно обжигают. Чистые Т. м. получают из рудных концентратов по сложной технологии в 3 стадии: вскрытие концентрата, выделение и очистка химических соединений, восстановление и рафинирование металла. Основой производства компактных Nb, Ta, Mo и W и их сплавов является Порошковая металлургия, которая частично используется в производстве и др. Т. м. В металлургии всех Т. м. всё шире применяют дуговую, электроннолучевую и плазменную плавки. Т. м. и сплавы особо высокой чистоты производят в виде монокристаллов бестигельной электроннолучевой или плазменной зонной плавкой. Полуфабрикаты из Т. м. — листы, фольгу, проволоку, трубы и т.д. изготовляют обычными методами обработки металлов давлением с промежуточной термообработкой.
Применение. Огромное значение Т. м., сплавов и соединений связано с их исключительно благоприятными свойствами и сочетаниями свойств, характерными для отдельных Т. м. Важнейшая область применения большинства Т. м. — использование их в виде сплавов в качестве жаропрочных материалов, прежде всего в самолётостроении, ракетной и космической технике, атомной энергетике, высокотемпературной технике. Детали из сплавов Т. м. при этом обычно предохраняют жаростойкими покрытиями.
Т. м. и их сплавы используются в качестве конструкционных материалов также в машиностроении, морском судостроении, электронной, электротехнической, химической, атомной промышленности и в др. отраслях техники. Широкое применение находят окислы и многие др. химические соединения Т. м. Более подробно о свойствах, способах получения и практического использовании Т. м. см. в статьях об отдельных элементах и их сплавах.
Лит.: Тугоплавкие материалы в машиностроении. Справочник, М., 1967; Основы металлургии, т. 4, М., 1967; Савицкий Е. М., Бурханов Г. С., Металловедение сплавов тугоплавких и редких металлов, 2 изд., М., 1971; Крупин А. В., Соловьев В. Я., Пластическая деформация тугоплавких металлов, М., 1971; 3еликман А. Н., Меерсон Г. А., Металлургия редких металлов, М., 1973; Савицкий Е. М., Клячко В. С., Металлы космической эры, М., 1972; Химия и технология редких и рассеянных элементов, т. 1—2, М., 1965—69; «Engineering and Mining Journal», 1974, v. 175, March.
Тугоплавкие металлы
Тугоплавкие металлы, по технической классификации — металлы, плавящиеся при температуре выше 1650—1700 °С; в число Т. м. (таблица) входят титан Ti, цирконий Zr, гафний Hf (IV несколько периодической совокупности), ванадий V, ниобий Nb, тантал Ta (V несколько), хром Cr, молибден Mo, вольфрам W (VI несколько), рений Re (VII несколько). Все эти элементы (не считая Cr) относятся к редким металлам, a Re — к рассеянным редким металлам. (Большой температурой плавления характеризуются кроме этого металлы платиновой группы и торий, но они по технической классификации не относятся к Т. м.) Тугоплавкие металлы
Темпе- ратура плавле-
Т. м. имеют близкое электронное строение атомов и являются переходными элементами с достраивающимися d-oболочками (см. табл.). В межатомных связях Т. м. участвуют не только наружные s-электроны, но и d-электроны, что определяет громадную прочность межатомных связей и, как следствие, большую температуру плавления, повышенные механические прочность, твёрдость, электрическое сопротивление. Т. м. имеют родные химические особенности.
Переменная валентность Т. м. обусловливает многообразие их химических соединений; они образуют металлоподобные тугоплавкие жёсткие соединения.
В природе Т. м. в свободном виде не видятся, в минералах довольно часто изоморфно замещают друг друга: Hf изоморфно ассоциирован с Zr, Ta с Nb, W с Mo; разделение этих пар — одна из очень тяжёлых задач химической разработке, решаемая в большинстве случаев способами экстракции либо сорбции из растворов или ректификации хлоридов.
Физические и химические особенности. Кристаллические решётки Т. м. IV группы и Re гексагональные, остальных, и Ti выше 882 °C, Zr выше 862 °C и Hf выше 1310°C — объёмно-центрированные кубические. Ti, V и Zr — довольно лёгкие металлы, а самые тугоплавкие из всех металлов — Re и W — по плотности уступают только Os, lr и Pt. Чистые отожжённые Т. м. — пластичные металлы, поддаются как горячей, так и холодной обработке давлением, в особенности прекрасно — Т. м. IV и V групп.
Для применения Т. м. принципиально важно, что благоприятные механические особенности их и сплавов на их базе сохраняются до высоких температур; это разрешает разглядывать их, например, как жаропрочные конструкционные материалы. Но механические особенности Т. м. в значительной степени зависят от их чистоты, условий термообработки и степени деформации.
Так, Cr и его сплавы кроме того при малом содержании некоторых примесей становятся непластичными, a Re, имеющий большой модуль упругости, подвержен сильному наклёпу, благодаря чего кроме того при маленькой степени деформации его нужно отжигать. Особенно очень сильно на особенности Т. м. воздействуют примеси углерода (кроме Re), водорода (для металлов IV и V групп), азота, кислорода, присутствие которых делает Т. м. хрупкими.
Характерные особенности всех Т. м.— устойчивость к действию воздуха и многих агрессивных сред при комнатной температуре и маленьком нагревании и высокая реакционная свойство при громадных температурах, при которых их направляться нагревать в вакууме либо в воздухе инертных к ним газов. Особенно активны при нагревании Т. м. IV и V групп, на каковые действует кроме этого водород, причём при 400—900 °C он поглощается с получением хрупких гидридов, а при нагревании в вакууме при 700—1000 °C снова выделяется; этим пользуются для превращения компактных металлов в порошки путём гидрирования (и охрупчивания) металлов, дегидрирования и измельчения.
Т. м. VI группы и Re химически менее активны (их активность падает от Cr к W), они не взаимодействуют с водородом, a Re — и с азотом; сотрудничество Mo с азотом начинается только выше 1500 °C, а W — выше 2000 °C. Т. м. способны образовывать сплавы со многими металлами.
Получение. Приблизительно 80—85% V, Nb, Mo (США, 1973) и большие количества вторых Т. м., не считая Hf, Ta и Re, приобретают из рудных концентратов либо технических окислов алюмино- либо силикотермическими методами в виде ферросплавов для введения в стали с целью легирования; молибденовые концентраты наряду с этим предварительно обжигают.
Чистые Т. м. приобретают из рудных концентратов по сложной разработке в 3 стадии: вскрытие концентрата, очистка и выделение химических соединений, рафинирование и восстановление металла. Базой производства компактных Nb, Ta, Mo и W и их сплавов есть порошковая металлургия, которая частично употребляется в производстве и др. Т. м. В металлургии всех Т. м. всё шире используют дуговую, электроннолучевую и плазменную плавки.
Т. м. и сплавы очень высокой чистоты создают в виде монокристаллов бестигельной электроннолучевой либо плазменной зонной плавкой. Полуфабрикаты из Т. м. — страницы, фольгу, проволоку, трубы и т.д. изготовляют простыми способами обработки металлов давлением с промежуточной термообработкой.
Использование. Огромное значение Т. м., соединений и сплавов связано с их только сочетаниями свойств и благоприятными свойствами, характерными для отдельных Т. м. Наиболее значимая область применения большинства Т. м. — применение их в виде сплавов в качестве жаропрочных материалов, в первую очередь в самолётостроении, ракетной и космической технике, ядерной энергетике, высокотемпературной технике. Подробности из сплавов Т. м. наряду с этим в большинстве случаев предохраняют жаростойкими покрытиями.
Т. м. и их сплавы употребляются в качестве конструкционных материалов кроме этого в машиностроении, морском судостроении, электронной, электротехнической, химической, ядерной индустрии и в др. отраслях техники. Широкое использование находят окислы и многие др. химические соединения Т. м. Более детально о особенностях, практического использовании и способах получения Т. м. см. в статьях об отдельных их сплавах и элементах.
Лит.: Тугоплавкие материалы в машиностроении. Справочник, М., 1967; Базы металлургии, т. 4, М., 1967; Савицкий Е. М., Бурханов Г. С., Металловедение сплавов тугоплавких и редких металлов, 2 изд., М., 1971; Крупин А. В., Соловьев В. Я., Пластическая деформация тугоплавких металлов, М., 1971; 3еликман А. Н., Меерсон Г. А., Металлургия редких металлов, М., 1973; Савицкий Е. М., Клячко В. С., Металлы космической эры, М., 1972; технология и Химия редких и рассеянных элементов, т. 1—2, М., 1965—69; Engineering and Mining Journal, 1974, v. 175, March.
Читать также:
Вольфрам — Самый ТУГОПЛАВКИЙ Металл На ЗЕМЛЕ!
Связанные статьи:
Редкие металлы, условное наименование группы металлов (более чем 50), список которых дан в таблице. Это металлы, относительно новые в технике либо ещё…
Раскисление металлов, процесс удаления из расплавленных металлов (в основном стали и др. сплавов на базе железа) растворённого в них кислорода, что есть…
Тугоплавкие металлы
Тугоплавкие металлы
Развитие техники уже в начале XX столетия потребовало твердых, жаростойких, жаропрочных, противокоррозионных и кислотоупорных металлов и сплавов со свойствами, превосходящими известные для обычных углеродистых сталей, тяжелых цветных металлов и их сплавов.
Жаростойкими считаются вещества, не претерпевающие поверхностных разрушений в атмосфере при температурах до 550° С.
Жаропрочные стали и сплавы, помимо того, должны выдерживать некоторые механические нагрузки, будучи нагретыми выше 600° С.
Тугоплавкие металлы, размещенные в средней части Периодической системы Д. И. Менделеева, все относятся к переходным элементам, у атомов которых d-орбитали заполнены менее чем наполовину, или имеют 5 электронов. Добавки этих элементов, иногда в малых количествах, улучшают свойства сплавов железа преимущественно вследствие изменения крупности зерна, интервала отпуска и закалки, а также образования карбидов. Помимо того, тугоплавкие металлы сами по себе жаростойки и жаропрочны, все они очень тверды, а при малых примесях углерода, кислорода и азота — пластичны. Карбиды тугоплавких металлов отличаются еще более высокими температурами плавления и кипения, а по твердости иногда близки к алмазу. О роли этих соединений в составе сплавов уже говорилось — они препятствуют деформации сдвига и увеличивают твердость обычно в ущерб пластичности. Весьма тверды и жаропрочны также некоторые бориды, нитриды и силициды тех же элементов.
Спеченные сплавы из карбидов или других тугоплавких соединений металлов — керметы получают методами порошковой металлургии. Мелкий твердый материал смешивают с порошком пластичного металла — кобальта или никеля, прессуют в форме нужного изделия, а затем спекают в среде водорода или нейтрального газа. Так делают резцы, фрезы, буровые коронки и другие режущие инструменты.
Свойства тугоплавких металлов, их карбидов и других твердых соединений еще недостаточно изучены. В частности, температуры плавления и кипения, весьма высокие и трудные для точного измерения, в литературе сообщаются с большими приближениями и различными цифрами, в табл.; они усреднены и округлены.
Таблица . Некоторые свойства тугоплавких металлов и их карбидов*
Металл и его порядковый номер | Структура атома | Карбид | Температура плавления, °С | Температура кипения, °С | ||
металла | карбида | металла | карбида | |||
22. Ті | Аr, 3d 2 4s 2 | TiC | 1725 | 3200 | 3170 | 4300 |
23. V | Аr, 3d 5 4s 2 | VC | 1735 | 2800 | 3400 | 3900 |
24. Сr | Аr, 3d 6 4si | Сr3С2 | 1800 | 1890 | 2200 | 3800 |
40. Zr | Кr, 4d 2 5s 2 | ZrC | 1860 | 3500 | 5050 | 5100 |
41. Nb | Кr, 4d 4 5s 1 | NbC | 2415 | 3700 | 3700 | — |
42. Mo | Кr, 4d 5 5s 1 | Mo2C | 2620 | 2680 | 4800 | — |
43. Тс | Кr, 4d 6 5s | — | 2150 | — | 4700 | — |
72. Hf | Xe, Sd 2 6s 2 | HfC | 2230 | 3880 | 5300 | — |
73. Та | Xe, 5d 3 6s 2 | TaC | 3000 | 3880 | 5300 | 5500 |
74. W | Xe, 5d 4 6s 2 | WC | 3410 | 2870 | 5930 | 6000 |
75. Re | Xe, 5d 5 6s 2 | — | 3170 | — | 5870 | — |
* Средние округленные данные для наиболее изученных карбидов.
Механические свойства значительно зависят от чистоты металлов, даже от присутствия кислорода и азота, поглощаемых из воздуха, от деформации после литья и режима затвердевания — скорости охлаждения.
В элементарном состоянии и сплавах на собственной основе наиболее употребительны титан, вольфрам и молибден. Сплавы других элементов своеобразны по составу и свойствам. За рубежом, например, применяют для камер сгорания и обшивки ракет сплав тантала с 8% вольфрама и 2% гафния, который сохраняет прочность в пределах температур от —260 до +2000° С; подобные, на первый взгляд неожиданные комбинации нередки. По другим данным, для аналогичных целей служат сплавы тантала, ниобия, молибдена и рения, также весьма жаропрочные.
Статья на тему Тугоплавкие металлы