Старение металла термообработка

Виды и режимы старения металла

Старение металла может происходить в результате длительной эксплуатации, при возникновении форс-мажорных обстоятельств, при нарушении технологии изготовления конструкции и выполняться специально. В первом и втором случае теряются первоначально заложенные свойства – материал физически изнашивается, и, как правило, требуется его полная замена. В третьем случае при выполнении гибочных, монтажных, сварных и других операций снижаются эксплуатационные свойства, что в некоторых случаях недопустимо. Поэтому особо ответственные изделия проверяют на склонность к деформационному старению по определенным методикам. Специально выполняемая операция по старению металла, имеющая второе название – дисперсионное твердение – разновидность заключительной термической обработки, которая проводится с целью получения необходимых физических, химических и механических свойств. Может выполняться естественным путем, искусственным способом (термообработкой) и пластическим деформированием. Используется для сплавов и металлов, у которых пересыщенный твердый раствор выделяет избыточный компонент и самопроизвольно распадается. В результате проведения операции любым способом у материалов увеличиваются такие показатели, как прочность и твердость, которые сохраняются на протяжении срока эксплуатации, но снижаются показатели пластичности и вязкости.

Виды старения металла

Выделяют 2 вида старения металла: термическое и механическое. Термический вид является разновидностью искусственного старения металла, которое выполняют с подогревом до определенной температуры, выдержкой и охлаждением на воздухе. В процессе операции изменяется растворимость углерода в альфа-железе в зависимости от температуры, до которой была нагрета заготовка. Режимы проведения операции зависят от марки стали, чугуна, цветного металла или сплава и указываются в технологическом процессе по выполнению операции. Различают следующие виды искусственного старения металлов:

  • полное (выполняется при определенной температуре с продолжительностью, обеспечивающей максимальные прочностные характеристики);
  • неполное (выполняется при более низкой температуре непродолжительно для повышения прочности и сохранения пластических свойств);
  • перестаривание (выполняется при высокой температуре или с большой выдержкой с целью получения высокой прочности, коррозионной стойкости, электропроводности и других свойств);
  • стабилизирующее (выполняется для стабилизации размеров и физико-химических свойств изделия).

Кроме того, операция может выполняться за насколько стадий, так называемое ступенчатое или двойное старение. Вначале нагрев осуществляют при более низкой температуре, а затем – при высокой. На первом этапе создаются многочисленные центры выделений твердого раствора, а на втором – обеспечивается их распад. Таким образом получается однородность и плотность распределения выделений в материале.

При естественном старении материал выдерживается при комнатной температуре определенное время, что приводит к повышению твердости, прочности и текучести. Процесс этот длительный. Обычно занимает 15 и больше дней (зависит от материала), когда изготовленные детали и заготовки хранятся на открытом воздухе. Чтобы ускорить процесс получения качественного материала и получить те же результаты, выполняют операцию искусственного старения в специальных печах по определенной технологии.

Механический вид называют деформационным, осуществляют путем пластической деформации при нагреве ниже температуры рекристаллизации материала. Обычно это 20 °C. Возможен вариант совмещения механического и термического старения. Такой способ применяют для легированных сталей.

Режимы старения

Чтобы искусственно состарить материал, необходимо знать марку металла или основу, на которой он изготовлен (химический состав). От этого зависит режим выполнения операции. Сюда входит выбор температуры нагрева и время выдержки. Ориентировочные данные указаны в таблице.

Металл или сплав на его основе Температура нагрева, °C Время выдержки, час
Алюминий 100÷235 1÷17
Медь 160÷330 2÷25
Титан 550 1
Магний 170÷180 16
Никель 690÷710 16
Сталь с высоким содержанием углерода 130÷150 25÷30

Операция может выполняться без предварительной закалки заготовок или деталей и с ней. И тут важно правильно подобрать температуру нагрева: она должна быть ниже той, при которой происходила закалка. В любом случае это оговаривается в технологическом процессе по изготовлению той или иной детали, который разрабатывают специалисты на производстве с учетом применяемого оборудования и режимов старения.

Скорость нагрева до температуры, с какой производится операция, особой роли не играет. Однако для алюминия и его сплавов лучше выполнять медленный нагрев. Это повысит прочность изделия.

Старение черных, цветных металлов и их сплавов является распространенным технологическим процессом, позволяющим добиться нужных свойств. Операция должна производиться с учётом структурных и физико-химических особенностей марки металла на качественном оборудовании, специально предназначенном для проведения искусственного старения. Такие печи выпускают отечественные и зарубежные производители в широком ассортименте. Они соответствуют современным требованиям к энергосбережению и безопасности, простоты в управлении и обслуживании. Работают на разных температурных режимах. Многие из моделей могут встраиваться в конвейерные линии, что позволяют повысить производительность труда. Различаются такие печи объемом садки, производительностью, мощностью и наличием дополнительных функций, которые упрощают выполнение такого вида термообработки.

Просим тех, кто занимался вопросами старения и выполнял такие операции, поделиться опытом в комментариях к тексту.

8. Отпуск и старение стали

3. Отпуск под нагрузкой

4. Отпуск после шлифования

5. Правка. Эффект кинетической пластичности

6. Термообработка после правки. Методы стабилизации размеров

Отпускомназывается операция термической обработки, при которой в результате нагрева ниже критической точки А1 закаленной на мартенсит стали происходит переход структуры из метастабильного состояния в равновесное или близкое к нему. Отпуск часто является конечной операцией термической обработки. Поэтому его цель – получение определенных характеристик готовых деталей или полуфабрикатов. В зависимости от температуры нагрева различают следующие виды отпуска: низко-, средне- и высокотемпературный. Влияние температуры отпуска на твердость сталей представлена на рис. 8.

Рис.8. Зависимость твердости углеродистых сталей от температуры отпуска.

Низкий отпуск выполняется при температурах 80-250 °С с получением структуры в углеродистых, низко- или среднелегированных сталях отпущенного мартенсита и приводит к частичному снятию внутренних напряжений. Такой отпуск проводится для цементованных, нитроцементованных закаленных деталей и после закалки т.в.ч., а также для инструмента, который должен иметь высокую твердость 60-63HRC.

Средний отпуск выполняется при температурах 320-450°С и обеспечивает в углеродистых и низколегированных сталях структуру троостита отпуска с твердостью 41-49HRC и практически полное снятие остаточных напряжений. Детали с такой структурой имеют высокий предел упругости и усталости, поэтому такой отпуск применяют для рессор и пружин.

Высокий отпуск проводится при температурах 450-700°С и обеспечивает распад мартенсита углеродистых, низко-, среднелегированных сталей на сорбит отпуска. Сочетание закалки с высоким отпуском называется улучшением. Это связано с тем, что после такой обработки достигается сочетание высоких значений прочности, пластичности и вязкости сталей. Твердость находится в пределах 250-350 НВ, прочность по сравнению с закаленным состоянием понижается в 1,5-2,0 раза, а пластичность и вязкость в несколько раз. Высокотемпературный отпуск применяется для широкого круга деталей, у которых необходимо иметь перечисленный комплекс свойств. Разновидностью высокого отпуска является дисперсионное твердение для высоколегированных сталей: жаропрочных, высокопрочных, быстрорежущих. Данная термическая обработка выполняется чаще всего при температурах 460-700°С.

При назначении температур отпуска нельзя забывать об отпускной хрупкости, которая приводит к значительному снижению ударной вязкости закаленных изделий. Необратимая отпускная хрупкость первого рода проявляется при температурах около 300 °С, поэтому стали при отпуске не нагревают до этой температуры. Обратимая отпускная хрупкость второго рода наблюдается при температуре

500 °С только в легированных хромом, никелем, марганцем сталях, особенно при совместном их введении. Склонность сталей к хрупкости второго рода увеличивается при содержании в стали примесей фосфора, мышьяка, сурьмы и олова. Данный тип отпускной хрупкости не проявляется в углеродистых и высокочистых по примесям легированных сталях.

Старение – это операция термической обработки, при которой в закаленном без полиморфного превращения сплаве происходит распад пересыщенного твердого раствора. Причиной старения стали является пересыщение феррита углеродом и азотом, а также примесными атомами и характерно для низкоуглеродистых сталей (≤ 0,03 % С). В результате старения происходит повышение твердости, прочности и снижение пластичности, вязкости стали, при этом сохраняется их значение с течением времени. В зависимости о температуры нагрева закаленного сплава старение может происходить при комнатной температуре (естественное старение) или повышенной (искусственное). Кроме того, различают еще два вида старения в зависимости от движущей силы распада: термическое старение, протекающее в закаленном сплаве и деформационное, происходящее в изделиях после пластической деформации при температуре ниже температуры рекристаллизации.

Термическое старение чаще всего наблюдается в низкоуглеродистых сталях при содержании 0,03-0,05% углерода. При закалке в таких материалах образуется пересыщенный α -твердый раствор, который при старении распадается с выделением избыточных фаз, что ведет к повышению твердости, прочности и снижению пластичности. Наибольший эффект изменения свойств наблюдается при естественном старении, но требуется значительное время. При искусственном старении полученные характеристики прочности ниже, чем при естественном, при этом время старения сокращается.

Холодная пластическая деформация приводит к значительному ускорению процессов распада α – твердого раствора при старении. Для тонких холоднокатаных листов из малоуглеродистой стали старение проводят после рекристаллизационного отжига. Выполнение старения можно провести по двум технологическим схемам. Первая – включает ускоренное охлаждение до

400 °С, изотермическую выдержку при этой температуре и регламентированное охлаждение со скоростью

3 °С⁄с. Вторая схема состоит из закалки с температуры рекристаллизационного отжига, затем термическое старение: нагрев до

400 °С с выдержкой 30 мин и медленное охлаждение.

Старение металла

Старение металла – это процессы, протекающие внутри металла и вызывающие изменения физических и механических свойств, внутренней структуры. Проистечение данных процессов может происходить естественным путем (при большой длительности по времени и температуре, приближенной к 20°С) и искусственным воздействием (термообработкой и пластическим деформированием).

Процесс старения

Старение в качестве температурной обработки используется как заключительная операция. Применима к тем металлам и сплавам, у которых пресыщенный твердый раствор может выделять избыточный компонент и самопроизвольно распадаться.

После проведения процедуры старения у металла увеличиваются твердость с прочностью, но при этом снижаются вязкость с пластичностью, но эти значения сохраняются на протяжении срока работы.

Старение стали производится для изменения внутренней структуры после закалки. Полученный твердый раствор феррита пресыщенный углеродом и азотом при нагревании распадается. В зависимости от количества содержания углерода в сплаве внутренняя структура может приобретать форму:

  • дискообразную (в виде тонких пластинок);
  • сферическую;
  • кубическую;
  • игольчатую.

Искусственное старение металла (термообработка) применяется к тем сплавам, в которых растворяемость одного элемента в твердом состоянии значительно снижена. Это проявляется при снижении температуры.

Во время искусственного старения в сталях с низким содержанием углерода, не выше 0,05%, распадается пресыщенный твердый альфа раствор. При этом выделяются избыточные фазы. Такая метаморфоза приводит к тому, что снижается пластичность, но приводит к увеличению твердости и прочности.

На рисунке показана модель Орована, которая иллюстрирует перемещение дислокаций. Максимального эффекта добиться возможно при естественном старении, но время затраченное на это будет значительным. Увеличить скорость протекания процесса можно искусственным старением, но при этом прочностные характеристики будут снижены.

Твердость в зависимости от времени старения

На графике отчетливо видно, что сокращение времени старения не позволяет получить высокую твердость.

Течение процесса старения во многом зависит от углерода и азота. Особенно это заметно в малоуглеродистых сталях. Азот с уменьшением температуры начинает хуже растворятся в альфа железе. Например, при температуре 590°С растворенного азота содержится 0,1%, но уже при 20°С его содержание снижается до 0,004%. При старении альфа раствор выделяет нитриды. Поэтому влияние азота менее выражено по сравнению с тем же углеродом при температурном воздействии.

При увеличении углерода в сталях увеличивается эффект изменения структуры, получаемый при термическом воздействии. Объем углерода, максимум которого может раствориться в альфа железе составляет 0,02-0,04%. При таком содержании закаленное изделие, подвергнутое естественному старению обладает твердостью в полтора раза выше чем после отжига.

Старение – это основной способ увеличения прочности жаропрочных сплавов (с высоким содержанием никеля). В эту же группу относятся сплавы на основе алюминия, меди, магния. Кроме того, измененная структура вышеперечисленных металлов и сплавов придает им коэрцитивную силу.

Алюминиевые и алюминисто-медные сплавы подвергаются деструкции при различных температурах (свыше 100°С) из-за различия в температуре распада структуры разных металлов. Так выделяют низкотемпературное и высокотемпературное изменение структуры.

Распад твердого раствора проходит по двум путям. В первом случае это образование и рост частиц фазы идет по всему объему. Во втором случае распад прерывистый (ячеистый). Во время него ячейки растут колониями. У колоний структура ячеистая, а рост идет от границы зерна и движется во внутрь, уменьшая размер.

Механическое и термическое старение

Существует два вида старения металла: термическое и механическое. Рассмотрим каждый из них более подробно.

Термическое старение

Фаза упрочняющая металл во время термического воздействия происходит в точке максимума. Здесь проходит метастабильный промежуток раствора в зоне Гинье-Престона. Такой вид упрочнения металлов и сплавов принято называть дисперсионным.

Зависимость прочности от времени и температуры старения

При более длительной выдержке начинается перестаривание, то есть снижение прочностных характеристик. На это влияют:

  • коагуляция;
  • частичная замена частиц некогерентыми.

Виды термического старения металла:

  • Двухступенчатое – закалка, затем выдержка при температуре замещения, а потом выдерживание с повышенной температурой для получения однородности твердого раствора.
  • Закалочное – закалка и одна фаза выдержки с естественным охлаждением.
  • Естественное – для алюминиевых сплавов.
  • Искусственное – для сплавов из цветных металлов с нагревом до температуры выше той, которая используется для естественной деструкции.
  • Стабилизационное – высокая температура старения и длительный срок выдержки помогают сохранить размеры и свойства детали.

Механическое старение металла

Деструкция стали при помощи деформирующих усилий происходит в диапазоне температур ниже процесса рекристаллизации. Обусловлено это образованием и движением дислокаций. При холодной пластической деформации увеличивает плотность дислокаций, которые далее еще больше увеличиваются при увеличении нагрузок.

Изменяющиеся механические свойства металла вызывает движение атомов углерода и азота к дислокациям, которые размещены в альфа растворе. Достигнув дислокаций атомы образуют облака (атмосферы Котрелла). Данные скопления препятствуют движению дислокаций, благодаря чему происходит изменение свойств. Появляются присущие состаренным термообработкой деталям свойства.

Если на эффект старения деформированием сильно влияют азот, никель и медь, то с добавками ванадия, титана и ниобия данный эффект полностью пропадает. Поэтому рекомендуется использовать сталь с содержанием алюминия 0,02-0,07%.

Рекомендуемые режимы для проведения старения

  • для сталей с высоким содержанием углерода: температура порядка 130°С-150°С, время выдержки порядка 25-30 часов;
  • для сплавов из цветных металлов: температура порядка 250°С, время выдержки порядка 1 часа.
  • для естественного процесса: температура порядка 20°С;
  • для искусственного протекания процесса: температура порядка 250°С, время выдержки порядка 1 часа.

Температура нагрева и время выдержки подбирается индивидуально к каждой марке металла и к сплаву в зависимости от их состава.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Искусственное старение

В зависимости от режима, структурных изменений и получаемого комплекса свойств искусственное старение можно подразделить на полное, неполное, перестаривание и стабилизирующее старение (соответствующие режимы и свойства приведены в таблице Режимы старения и механические свойства состаренных сплавов на разной основе для литейного алюминиевого сплава AЛ9).

Полное искусственное старение проводят при такой температуре и продолжительности, которые обеспечивают достижение максимальной прочности.

Неполное искусственное старение — это старение с более короткой выдержкой или при более низкой температуре, чем полное с целью повысить прочность при сохранении достаточной пластичности. Режимы неполного старения соответствуют восходящим ветвям кривых на рисунках Схема зависимости прочностных свойств и Схема зависимости прочности от температуры старения. Некоторая потеря возможного прироста прочности компенсируется меньшим снижением пластичности.

Перестаривание — это старение при более высокой температуре или большей выдержке, чем полное, с целью получить сочетание повышенных прочности, пластичности, коррозионной стойкости, электропроводности и других свойств. Режимы перестаривания соответствуют нисходящим ветвям кривых на рисунках Схема зависимости прочностных свойств и Схема зависимости прочности от температуры старения.

По сравнению с неполным старением перестаривание при той же прочности обеспечивает большую степень распада твердого раствора и коагуляцию выделений, что часто позволяет достигнуть требуемого комплекса разнообразных свойств.

Стабилизирующее старение — это разновидность перестаривания, целью которого является стабилизация свойств и размеров изделия.

Жаропрочные сплавы, предназначенные для длительной службы, обычно подвергают старению при температуре выше рабочей. В противном случае при эксплуатации изделия в нем будут активно протекать структурные изменения, приводящие к разупрочнению и нестабильности свойств изделия. Очень часто термическую обработку жаропрочных сплавов проводят в режиме перестаривания.

Выбор режима старения следует проводить с учетом условий закалки.
С повышением температуры нагрева под закалку из однофазной области (выше Т в сплаве С на рисунке Схема к объяснению закалки без полиморфного превращения) старение ускоряется из-за повышения концентрации закалочных вакансий, которая входит в предэкспоненциальный множитель А в выражении для скорости зарождения новой фазы.

Таким образом, С-кривые распада раствора на рисунке С-кривые образования зон ГП с повышением температуры закалки сдвигаются влево, причем этот сдвиг больше в низкотемпературной области, где роль закалочных вакансий особенно велика.

Некоторые сплавы подвергают старению без специального нагрева под закалку. В таких случаях пересыщение раствора достигается ускоренным охлаждением с температуры конца затвердевания отливки или горячей обработки давлением.

Упрочнение здесь не достигает максимально возможного для данного сплава из-за меньшей пересыщенности твердого раствора, но экономическая эффективность (исключение операции закалки) делает указанное старение целесообразным для ряда деталей. Для отдельных сплавов, например для сплава MЛ12 системы Mg — Zn — Zr, старение отливок без специального нагрева под закалку является основным способом термической обработки.

Скорость охлаждения после старения не влияет на свойства сплава.
Обычно с температуры старения изделия охлаждают на воздухе.

«Теория термической обработки металлов»,
И.И.Новиков

Явление возврата после старения было открыто на дуралюмине. Если естественно состаренный дуралюмин нагреть до температуры примерно 250 °С, выдержать 20 — 60 с и быстро охладить, то его свойства возвращаются к значениям, характерным для свежезакаленного состояния. Сущность явления возврата состоит в том, что зоны ГП, возникшие при естественном старении, во время нагрева сплава растворяются, метастабильные…

Выбор температуры и продолжительности старения После предварительной оценки температурного уровня старения по соотношению или по аналогии с другими сплавами на базе того же металла экспериментально отрабатывают режим старения, строя графики, подобные рисуноки Схема зависимости прочностных свойств и Схема зависимости прочности от температуры старения. Как известно, старение подразделяют на естественное, происходящее при комнатной температуре, и искусственное,…

Старение с выдержкой вначале при одной, а затем при другой температуре называют ступенчатым. Как правило, температуру первой ступени выбирают ниже, чем второй. Основная цель двухступенчатого (двойного) старения — создать большое число центров выделений на низкотемпературной ступени, когда пересыщенность твердого раствора велика (на рисунке Размер выделений степень пересыщенности C0/C1 растет с понижением температуры Т1), а затем…

Рассмотрим практически важный случай сложной роли естественного старения на примере сплавов системы Al — Mg — Si, находящихся на квазибинарном разрезе Al — Mg2Si или недалеко от него (сплавы типа авиаль). В этих сплавах при естественном старении образуются игольчатые зоны ГП, обогащенные магнием и кремнием, а при искусственном (170 °С) — метастабильная β´-фаза (смотрите таблицу…

С ролью предстарения тесно связан вопрос о роли скорости нагрева при одноступенчатом старении. Обычно на скорость нагрева до температуры старения не обращают внимания. Однако начальные стадии распада при замедленном нагреве могут влиять на свойства состаренного сплава. Так, например, замедленный нагрев до температуры старения некоторых алюминиевых сплавов позволяет несколько повысить их прочность. Режимы старения и механические…

Читать еще:  Как затачивать резцы по металлу
Ссылка на основную публикацию
Adblock
detector