Основные методы защиты металлов от коррозии

Способы защиты металла от коррозии

Способы защиты металлических деталей от коррозии можно разделить на следующие группы:

  • • нанесение неметаллических веществ или металлических покрытий;
  • • диффузионное насыщение поверхностного слоя;
  • • покрытие стойкими пленками оксидов или солей (химические покрытия);
  • • использование коррозионно-стойких сплавов;
  • • применение ингибиторов коррозии;
  • • протекторная защита.

Покрытие неметаллическими веществами нанесение на поверхность металла красок, лаков, противокоррозионных паст, защитных смазок, пластмасс, резины или эбонита. Покрытие резиной и эбонитом называется гуммированием, применяют для защиты цистерн для перевозки кислот, щелочей, растворов солей.

Металлическое покрытие нанесение металла на поверхность стального изделия горячим и гальваническим способами. При горячем способе нанесения покрытия (оцинкование, лужение оловом, свинцевание) изделие погружают в ванну с расплавленным металлом. На автомобилях используют оцинкованные кузовные и крепежные детали, покрытые оловом ленты для трубок радиатора, освинцованные наконечники зажимов проводов электрооборудования, топливные баки и т. д. Лужение применяют при производстве белой жести и медной посуды; оцинкование — для проволоки, кровельного железа, труб; свинцевание — для химической аппаратуры и труб. Гальванический способ был рассмотрен выше. Например, на автомобилях устанавливают хромированные декоративные детали (бамперы, ободки фар и др.).

Диффузионный способ состоит в насыщении поверхностных слоев стальной детали различными химическими элементами, вступающими с ним в химическое соединение. К нему относятся цементация, цианирование, алитирование.

Покрытие пленками окислов имеет две разновидности — оксидирование и фосфатирование. Оксидирование (воронение) применяют для защиты черных металлов путем создания на поверхности окисной пленки погружением деталей в кипящий водный раствор едкого натрия, селитры и перекиси марганца.

Полученная пленка стойкая в сухом воздухе, менее стойка во влажном, особенно в воде.

Фосфатирование позволяет получить на поверхности металла пленку нерастворимых фосфатов, изолирующих изделие от окружающей среды.

Создание коррозионно-стойких сплавов осуществляется введением в сталь легирующих добавок: хрома, никеля, алюминия, кремния, вольфрама и других химических элементов, повышающих коррозионную стойкость и улучшающих другие свойства металла.

Ингибиторы коррозии вещества, при добавлении которых в агрессивную среду происходит затормаживание коррозии. Этим методом можно защищать практически любые металлы и почти в любых средах, включая охлаждающие жидкости, масла, жидкое топливо.

Защищают металлы от коррозии и с помощью органосиликатов, которые в исходном состоянии представляют собой суспензии. Их наносят на поверхность кистью, валиком, пульверизатором и т. п. При нагревании они превращаются в керамику и приобретают повышенные защитные свойства, становясь термо-и даже жаростойкими. Их удобно использовать для выхлопных систем с наружной стороны деталей. Они затвердевают от собственной температуры детали. Они легко обрабатываются, что позволяет в случае необходимости оперативно восстанавливать поврежденные участки.

Для получения органосиликатных покрытий используют кремнийорганические полимеры (лаки), пигменты, оксиды, слюду, тальк, асбест.

Протекторная защита заключается в создании гальванической пары из вышеприведенного ряда металлов с целью заведомого разрушения одного из них при гарантированном сохранении ответственной детали, выполненной из другого металла.

Контрольные вопросы

  • 1. Расскажите о классификации сталей.
  • 2. Какие постоянные примеси содержатся в сталях? В каком количестве?
  • 3. Как обозначаются углеродистые стали?
  • 4. Расскажите о классификации чугунов.
  • 5. Для изготовления каких деталей используют белый и серый чугуны?
  • 6. Какие детали изготовляют из высокопрочного и ковкого чугунов?
  • 7. Как обозначаются высокопрочные и ковкие чугуны?
  • 8. Какие химические элементы используют для легирования стали?
  • 9. Как обозначаются легированные стали?
  • 10. Какие стали называют быстрорежущими?
  • 11. Назовите виды изделий, получаемые с помощью порошковой металлургии.
  • 12. Что такое латунь, бронза? Как они обозначаются?
  • 13. Какие вы знаете виды антифрикционных сплавов?
  • 14. Расскажите об особенностях композиционных материалов.
  • 15. Чем отличаются термопласты от реактопластов?
  • 16. Рсскажите о классифиции минерального стекла.
  • 17. Назовите способы защиты металла от коррозии.

Коррозия металлов

Коррозия – разрушение поверхности сталей и сплавов под воздействием различных физико-химических факторов – наносит огромный ущерб деталям и металлоконструкциям. Ежегодно этот невидимый враг «съедает» около 13 млн. т металла. Для сравнения – металлургическая промышленность стран Евросоюза в прошлом, 2014 году произвела всего на 0,5 млн. тонн больше. И это только – прямые потери. А длительная эксплуатация стальных изделий без их эффективной защиты от коррозии вообще невозможна.

Что такое коррозия и её разновидности

Основной причиной интенсивного окисления поверхности металлов (что и является основной причиной коррозии) являются:

  1. Повышенная влажность окружающей среды.
  2. Наличие блуждающих токов.
  3. Неблагоприятный состав атмосферы.

Соответственно этому различают химическую, трибохимическую и электрохимическую природу коррозии. Именно они в совокупности своего влияния и разрушают основную массу металла.

Химическая коррозия

Такой вид коррозии обусловлен активным окислением поверхности металла во влажной среде. Безусловным лидером тут является сталь (исключая нержавеющую). Железо, являясь основным компонентом стали, при взаимодействии с кислородом образует три вида окислов: FeO, Fe2O3 и Fe3O4. Основная неприятность заключается в том, что определённому диапазону внешних температур соответствует свой окисел, поэтому практическая защита стали от коррозии наблюдается только при температурах выше 10000С, когда толстая плёнка высокотемпературного оксида FeO сама начинает предохранять металл от последующего образования ржавчины. Это процесс называется воронением, и активно применяется в технике для защиты поверхности стальных изделий. Но это – частный случай, и таким способом активно защищать металл от коррозии в большинстве случаев невозможно.

Читать еще:  Ручная гильотина для резки металла своими руками

Химическая коррозия активизируется при повышенных температурах. Склонность металлов к химическому окислению определяется значением их кислородного потенциала – способности к участию в окислительно-восстановительных реакциях. Сталь – ещё не самый худший вариант: интенсивнее её окисляются, в частности, свинец, кобальт, никель.

Электрохимическая коррозия

Эта разновидность коррозии более коварна: разрушение металла в данном случае происходит при совокупном влиянии воды и почвы на стальную поверхность (например, подземных трубопроводов). Влажный грунт, являясь слабощёлочной средой, способствует образованию и перемещению в почве блуждающих электрических токов. Они являются следствием ионизации частиц металла в кислородсодержащей среде, и инициирует перенос катионов металла с поверхности вовне. Борьба с такой коррозией усложняется труднодоступностью диагностирования состояния грунта в месте прокладки стальной коммуникации.

Электрохимическая коррозия возникает при окислении контактных устройств линий электропередач при увеличении зазоров между элементами электрической цепи. Помимо их разрушения, в данном случае резко увеличивается энергопотребление устройств.

Трибохимическая коррозия

Данному виду подвержены металлообрабатывающие инструменты, которые работают в режимах повышенных температур и давлений. Антикоррозионное покрытие резцов, пуансонов, фильер и пр. невозможно, поскольку от детали требуется высокая поверхностная твёрдость. Между тем, при скоростном резании, холодном прессовании и других энергоёмких процессах обработки металлов начинают происходить механохимические реакции, интенсивность которых возрастает с увеличением температуры на контактной поверхности «инструмент-заготовка». Образующаяся при этом окись железа Fe2O3 отличается повышенной твёрдостью, и поэтому начинает интенсивно разрушать поверхность инструмента.

Методы борьбы с коррозией

Выбор подходящего способа защиты поверхности от образования ржавчины определяется условиями, в которых работает данная деталь или конструкция. Наиболее эффективны следующие методы:

  • Нанесение поверхностных атмосферостойких покрытий;
  • Поверхностная металлизация;
  • Легирование металла элементами, обладающими большей стойкостью к участию в окислительно-восстановительных реакциях;
  • Изменение химического состава окружающей среды.

Механические поверхностные покрытия

Поверхностная защита металла может быть выполнена его окрашиванием либо нанесением поверхностных плёнок, по своему составу нейтральных к воздействию кислорода. В быту, а также при обработке сравнительно больших площадей (главным образом, подземных трубопроводов) применяется окраска. Среди наиболее стойких красок – эмали и краски, содержащие алюминий. В первом случае эффект достигается перекрытием доступа кислороду к стальной поверхности, а во втором – нанесением алюминия на поверхность, который, являясь химически инертным металлом, предохраняет сталь от коррозионного разрушения.

Положительными особенностями данного способа защиты являются лёгкость его реализации и сравнительно небольшие финансовые затраты, поскольку процесс достаточно просто механизируется. Вместе с тем долговечность такого способа защиты невелика, поскольку, не обладая большой степенью сродства с основным металлом, такие покрытия через некоторое время начинают механически разрушаться.

Химические поверхностные покрытия

Коррозионная защита в данном случае происходит вследствие образования на поверхности обрабатываемого металла химической плёнки, состоящей из компонентов, стойких к воздействию кислорода, давлений, температур и влажности. Например, углеродистые стали обрабатывают фосфатированием. Процесс может выполняться как в холодном, так и в горячем состоянии, и заключается в формировании на поверхности металла слоя из фосфатных солей марганца и цинка. Аналогом фосфатированию выступает оксалатирование – процесс обработки металла солями щавелевой кислоты. Применением именно таких технологий повышают стойкость металлов от трибохимической коррозии.

Недостатком данных методов является трудоёмкость и сложность их применения, требующая наличия специального оборудования. Кроме того, конечная поверхность изменяет свой цвет, что не всегда приемлемо по эстетическим соображениям.

Легирование и металлизация

В отличие от предыдущих способов, здесь конечным результатом является образование слоя металла, химически инертного к воздействию кислорода. К числу таких металлов относятся те, которые на линии кислородной активности находятся возможно дальше от водорода. По мере возрастания эффективности этот ряд выглядит так: хром→медь→цинк→серебро→алюминий→платина. Различие в технологиях получения таких антикоррозионных слоёв состоит в способе их нанесения. При металлизации на поверхность направляется ионизированный дуговой поток мелкодисперсного напыляемого металла, а легирование реализуется в процессе выплавки металла, как следствие протекания металлургических реакций между основным металлом и вводимыми легирующими добавками.

Изменение состава окружающей среды

В некоторых случаях существенного снижения коррозии удаётся добиться изменением состава атмосферы, в которой работает защищаемая металлоконструкция. Это может быть вакуумирование (для сравнительно небольших объектов), или работа в среде инертных газов (аргон, неон, ксенон). Данный метод весьма эффективен, однако требует дополнительного оборудования – защитных камер, костюмов для обслуживающего персонала и т.д. Используется он главным образом, в научно-исследовательских лабораториях и опытных производствах, где специально поддерживается необходимый микроклимат.

Читать еще:  К какой группе металлов относится титан

Кто нам мешает, тот нам поможет

В завершение укажем и на довольно необычный способ коррозионной защиты: с помощью самих окислов железа, точнее, одного из них – закиси-окиси Fe3O4. Данное вещество образуется при температурах 250…5000С и по своим механическим свойствам представляет собой высоковязкую технологическую смазку. Присутствуя на поверхности заготовки, Fe3O4 перекрывает доступ кислороду воздуха при полугорячей деформации металлов и сплавов, и тем самым блокирует процесс зарождения трибохимической коррозии. Это явление используется при скоростной высадке труднодеформируемых металлов и сплавов. Эффективность данного способа обусловлена тем, что при каждом технологическом цикле контактные поверхности обновляются, а потому стабильность процесса регулируется автоматически.⁠

Способы защиты металлов от коррозии, виды коррозии металла

Коррозия металла представляет собой его разрушение, как результат окисления под действием химических или электрохимических процессов. Яркими примером такой коррозии является ржавление. Однако разновидностей коррозии металлов немало.

Виды коррозии металла

Существует несколько классификаций коррозии металлов. Так, по виду разрушений выделяют сплошную, местную и точечную коррозии. Первая поражает всю поверхность металла равномерно. При местной коррозии выделяются отдельные коррозионные пятна. А точечная коррозия указывает на начальную стадию поражения и проявляется в отдельных точках разрушений.

По характеру проникновения внутрь металла можно выделить межкристаллитную (интеркристаллитную) и транскристаллитную коррозии. Первая проникает между зернами металла, выбирая наиболее слабые места их соединений. Вторая проходит прямо через зерна металла. Обе опасны тем, что быстро приводят к растрескиванию металла и потере им прочности. При этом поверхность изделия может оставаться нетронутой.

Отдельно в данной классификации можно выделить ножевую коррозию, которая обычно приводит к ровной трещине, располагающейся параллельно сварочному шву. Как правило, она возникает при использовании металлических изделий в агрессивных средах.

По способу взаимодействия металла со средой принято выделять химическую и электрохимическую коррозию. металла. При химической атомы металла связываются с атомами действующих на него окислителей, входящих в состав среды. Как правило, это происходит при взаимодействии со средой, не являющейся проводником электричества. При электрохимической коррозии катионы кристаллической решетки металла связываются с другими составляющими коррозионной среды. При этом сам окислитель заполучает высвободившиеся электроны. Подобный тип коррозии характерен для взаимодействия металлов с растворами или расплавами электролитов.

Можно выделить виды коррозии металла по типу среды, воздействующей на него. Так, выделяют газовую, атмосферную, жидкостную и подземную коррозии. Однако чаще всего речь идет о смешанных типах коррозии, когда на металл воздействует сразу несколько сред.

Методы защиты металлов от коррозии

Существует несколько основных методов защиты металла от коррозии:
– увеличение химического состава металла с целью повышения его антикоррозийных характеристик;
– изоляция поверхности металла антикоррозийными материалами;
– снижение агрессивности среды, в которой производятся и эксплуатируются металлические изделия;
– наложение внешнего тока, обеспечивающего электрохимическую защиту от коррозии.
Таким образом, можно защитить металлические изделия от коррозии до начала их эксплуатации или во время нее.

Мы давно занимаемся проблемой защиты металла от коррозии и можем предложить наилучшие варианты. Самый простой из них и широко применяемый нами – это использование специальных металлических защитных покрытий. Так, применение анодных покрытий увеличивает до максимума отрицательных электрохимический потенциал металла, исключая возможность его коррозии. Катодное покрытие имеет менее выраженное действие и требует нанесения более толстого слоя, но при этом оно значительно увеличивает твердость и износостойкость изделия.

Если рассматривать виды покрытия с точки зрения их получения, то можно выделить химическое и электролитическое осаждения, горячее и холодное нанесения, металлическое напыление, плакирование и термодиффузионную обработку.

Одним из самых популярных способов защиты металла от коррозии является нанесение неметаллических составов. Это может быть пластик, керамика, каучук, битум, полиуретан, лакокрасочные составы и многое другое. Причем последние представляют собой наиболее широкий ассортимент и могут применяться в зависимости от условий среды, в которых будет использоваться изделие. Так выделяют лакокрасочные покрытия, устойчивые к действиям воды, атмосферы, химическим растворам и т. д.

Для смягчения действия коррозионной среды можно ввести в нее небольшое количество ингибиторов, которые приводят к нейтрализации или обескислороживанию среды и образуют адсорбционную пленку, защищающую поверхность металла. При этом пленка может в некоторой степени изменить электрохимические показатели металлов.

Электрохимическая коррозионная защита металлов заключается в катодной или анодной поляризации (внешнем воздействии тока). Это также возможно осуществить путем присоединения к металлическому изделию протекторов, замедляющих коррозию.

В современном производстве большое значение уделяется разработке устойчивых к коррозии металлических сплавов. Например, коррозионная устойчивость значительно повышается при добавлении в железный сплав хрома и никеля. Магниевые сплавы с этой же целью легируются марганцем, а никелевые – медью.

Проблеме защиты металлической продукции от коррозии наша компания «Черметком» уделяет большое внимание, нанося специальные покрытия, производя обработку изделий из металла электрическим током или выполняя протекторную защиту. У нас вы также можете приобрести изделия, созданные из устойчивых к коррозии сплавов. Причем металл и продукцию из него можно купить на наших складах в Москве или заказать их изготовление по индивидуальному проекту.

Читать еще:  Как делать заклепки на металле

Методы защиты металлов от коррозии.

Защита от коррозии – это комплекс мероприятий, направленных на предотвращение и замедление коррозионных процессов, сохранение и поддержание работоспособности узлов и агрегатов машин, оборудования и сооружений. Выделяют следующие способы защиты от коррозии: методы воздействия на металл и саму конструкцию (легирование, обработка поверхности, нанесение защитных покрытий, рациональное конструирование), методы воздействия на коррозионную среду и условия эксплуатации (ингибирование, обработка среды, электрохимическая защита, герметизация, осушка воздуха, создание искусственной атмосферы), а также комбинированные методы.

Способы защиты от коррозии выбирают на стадии конструирования и осуществляют в процессе изготовления и эксплуатации объектов.

Рациональное конструирование изделий включает учет следующих факторов:

– правильный выбор материалов для изделий и конструкций, которые должны быть стойкими в данной коррозионной среде, не способны впитывать влагу, не выделять коррозионно-активных агентов в процессе эксплуатации;

– рациональное сочетание и компоновка в одном узле деталей, изготовленных из металлов, отличающихся значениями электродных потенциалов, которое достигается предотвращением их непосредственного контакта друг с другом и с коррозионной средой, путем изоляции соприкасающихся материалов, применения прокладок, уплотнительных мастик и герметиков;

– оптимальная форма деталей и изделий, включающих дренажные отверстия и проветриваемые полости, минимум коррозионно-опасных мест: углублений, пазов, щелей, канавок, зазоров, застойных зон;

– минимальная слитность сечения, то есть отношения периметра сечения к его площади, характеризующая поверхность соприкосновения конструкций с коррозионной средой;

– характер соединения элементов в сборке (сварные соединения предпочтительнее клепанных и болтовых), так как они приводят к возникновению больших внутренних напряжений и пор;

– возможность нанесения и возобновления различных покрытий в процессе эксплуатации.

Легирование металлов– способ повышения их стойкости к воздействию агрессивных сред. В данном методе в металл или сплав вводят добавки, которые вызывают их пассивацию.

Изменение состава и свойств коррозионной среды, с целью уменьшения её агрессивности, осуществляют либо введением в неё специальных веществ – ингибиторов коррозии, либо соответствующей её обработкой. Ингибиторами называют химические соединения, введение которых в небольших количествах в коррозионную среду резко снижает скорость коррозии. По химическому составу различают органические и неорганические ингибиторы. По условиям применения различают жидкофазные ингибиторы для растворов и летучие ингибиторы, которые дают защитный эффект в условиях атмосферной коррозии. По механизму действия различают катодные, анодные и экранирующие ингибиторы.

Механизм защитного действия ингибиторов заключается в адсорбции их на поверхности и последующем торможении анодных (анодные ингибиторы), катодных (катодные ингибиторы) процессов электрохимической коррозии, а также в образовании защитных и пассивирующих пленок. Анодные ингибиторы – это неорганические соединения, обладающие окислительными свойствами. Такими свойствами обладают хроматы, нитриты, молибдаты. Они восстанавливаются на катодных участках поверхности, обеспечивающих пассивацию анодных участков с образованием на них защитных пленок из оксидов или малорастворимых солей.

Катодные ингибиторы по защитному действию менее эффективны, чем анодные. Они тормозят протекание катодных процессов. Это достигается:

– путем уменьшения концентрации растворенного кислорода посредством связывания его в химическое соединение (в случае коррозии с кислородной деполяризацией);

– за счет повышения перенапряжения катодного выделения водорода добавлением в растворы определенных солей (при коррозии с водородной деполяризацией);

– за счет уменьшения площади катодных участков посредством экранирования.

Анодные и катодные ингибиторы оказывают защитное действие только в нейтральных и щелочных растворах. В сильнокислотных растворах используют экранирующие ингибиторы. В качестве экранирующих ингибиторов используются органические соединения, содержащие в своем составе атомы серы, кислорода, азота (альдегиды, фенолы, меркаптаны, амины, соли ароматических карбоновых кислот). За счет того, что они имеют полярные группы или неподелённые электронные пары у атомов O, S, N, одни из них затрудняют протекание катодной реакции, другие анодной.

Ингибиторы атмосферной коррозии подразделяют на нелетучие – контактные и летучие – парофазные. Нелетучие ингибиторы применяют при хранении изделий на складе. Их наносят на поверхность изделий или на его упаковку. Летучие ингибиторы используют для защиты, как в сухой, так и во влажной атмосфере. Обычно это нетоксичные вещества, с невысоким давлением паров при обычных температурах. Испаряясь, они заполняют окружающую воздушную среду. Пары адсорбируются на поверхности металла и образуют пленки с анодным и катодным механизмами защитного действия. К летучим ингибиторам относятся нитриты и карбонаты замещенных аминов, а также сложные эфиры карбоновых кислот.

Практическое использование ингибитора определяется его эффективностью, токсичностью и ущербом, наносимым окружающей среде.

Для защиты металлоизделий от атмосферной коррозии используют ингибированные смазки – нефтяные масла, воск, вазелин, ланолин.

Ссылка на основную публикацию
Adblock
detector