Копьевая резка металла
Термическое копье – простой резак, который плавит даже камень
Так возникла идея термического копья. Чтобы раскалить железо, такое копьё будет использовать чистый кислород, благодаря которому будут создаваться температуры, способные плавить камень, не говоря уже о гайках или болтах!
Материалы.
— Кислородный баллон
— Мягкий силиконовый воздушный шланг 4Х6 мм
— Трубка от тормозной системы
— Стальная вата.
Термическое копьё генерирует ту же самую химическую реакцию, только вместо мелко сплетённых металлических нитей и низкой концентрации кислорода в нём применяется гораздо более плотная металлическая трубка. используемая как горючее. Малая плоскость поверхности на острие копья компенсируется подачей чистого кислорода через трубку для разжигания пламени.
Промышленные версии термических копий обычно питаются кислородом за счёт большой ацетиленово-кислородной горелки.
Чтобы сохранить мобильность прибора, автор использует в качестве источника кислорода имеющийся в распоряжении кислородный небольшой баллон.
На баллон надета специальная насадка, позволяющая подсоединить его к какой-либо другой ёмкости или системе, в данном случае это будет обычная виниловая трубка на ¼ дюйма.
Автор предостерегает своих читателей от попыток самостоятельно модифицировать баллон, так как это может привести к его разгерметизации и возгоранию!
Теперь, чтобы зажечь стальную трубку даже в среде с чистым кислородом, потребуется источник воспламенения с действительно очень высокой температурой. Для этого на производстве и используют ацетилено-кислородной горелки, чтобы инициировать воспламенение.
Автор находит замену этой громоздкой технологической конструкции. На основе полученного прежде опыта, он приходит к мысли, что в качестве такого источника возгорания металла может выступить и стальная вата, о которой шла речь выше.
Автор берёт небольшое её количество, скручивает в тонкий жгут и заправляет внутрь металлической трубки. В таком виде стальные нити очень легко воспламеняются, и если на тот момент, когда нити начнут уже тлеть, начать медленно подавать на них чистый кислород, температура станет настолько высокой, что легко разогреет копьё.
Спасибо автору за идею простого, но полезного приспособления для разрезания металлов!
Всем хорошего настроения, удачи, и интересных идей!
Авторское видео можно найти здесь.
Область применения и методы газовой резки по бетону
Рисунок 1 — Газовая резка
Конструкции и изделия из бетона/железобетона, так же, как и металлические аналоги, подвергаются дополнительной обработке: выполняется подгонка под определенные размеры, делаются проемы под окна и двери, отверстия в стенах под трубы и коммуникации. Для этих целей применяется кислородно-флюсовая газовая резка.
Хорошие показатели при выполнении такой работы дает флюс с высокой тепловой эффективностью, в состав которого входят железный и алюминиевый порошки в сочетании 75-85% и 15-25% соответственно.
Принцип работы
В процессе резки газовым резаком происходит следующее: разогретый металл сжигается в струе кислорода, который нагнетается под давлением. Предварительно, сплав разогревают до необходимой температуры, при помощи специальной горящей смеси ацетилена с кислородом. Такой способ резки, кислородно-ацетиленовым резаком, применяется практически ко всем маркам металла (кроме нержавейки, цветных металлов и сплавов). Для газовой резки железобетонных изделий используют другой метод.
Кислородно-флюсовая резка
Метод заключается в следующем: в зону реза струей сжатого воздуха (например кислорода или азота) вдувается флюс (вещество, содействующее образованию шлака и улучшению качества металла при плавке) на основе порошка из железа, который выделяет при сгорании дополнительное количество теплоты, снижает концентрацию входящих в материал примесей и разжижает шлак.
При кислородно-флюсовой резке воспламенение флюса начинается над поверхностью разрезаемого материала, а полное сгорание происходит в полости реза. На практике это расстояние выбирается в зависимости от разрезаемого материала и колеблется в пределах от 15 до 50 мм.
С помощью специальной техники разрезаются железобетонные конструкции толщиной от 90 до 300 мм. При этом скорость прохода составляет 100 мм в минуту. Для образования хорошего струйного потока применяются сопла имеющие форму цилиндра и конуса суженную к выходу. Для резки толстых железобетонных конструкций используют метод кислородно-копьевой резки.
Кислородно-копьевая резка
Более продуктивным способом газовой резки по бетону является порошковое копье, с помощью которого работы можно проводить на конструкциях толщиной от 100 до 2000 мм. Порошковое копье имеет свойства обычного кислородного копья, которое предназначено для глубокого проникновения в материал, и свойства кислородно-флюсовой резки.
Рисунок 2 — Схема кислородно-копьевой резки
Принцип заключается в следующем: с помощью специальной автоматизированной трубки в место реза подается смесь железного и алюминиевого порошка, сгорание которого выделяет дополнительное тепло. Что бы кислородное копье длиной 3000 — 6000 мм подавало кислород к месту прожигания отверстия, используют специальную установку УФР-5.
В устройстве применяется толстостенная металлическая труба из стали наибольшим диаметром 20 — 35 мм заполненная на 60—65 % стальными прутками или тонкостенную газовая труба того же диаметра, обмотанная снаружи стальной проволокой диаметром 3—4 мм, через которую подается кислород, участвующий не только в горении, но и в выдувании продуктов, образовавшихся в результате сгорания.
Зная толщину конструкции можно просчитать количество затраченных на резку ресурсов исходя из данных таблицы 1.
Глубина, мм | Диаметр прожигаемого отверстия, мм | Расход флюса, кг/ч | Давление кислорода, кг*с/ см. кв | Расход кислорода, м. куб /ч | Расход стальной трубки, м/м длинны отверстия | Диаметр копья, дюймы | Скорость прожигания, мм/мин |
До 500 | 50 — 55 | 30 | 6 — 7 | 60 — 80 | 4 | 3/8 | 120 — 180 |
500 — 1000 | 55 — 60 | 30 | 8 — 10 | 80 — 100 | 4 — 5 | 3/8 | 80 — 120 |
1000 — 1500 | 60 — 70 | 30 | 10 — 12 | 100 — 120 | 5 — 6 | 3/8 | 40 — 80 |
Резак УФР-5
УФР-5 используется как в ручной, так и в машинной кислородно-флюсовой резке. Так же его используют в кислородно-копьевой (порошковой) резке для точечного прожигания отверстий в материалах.
Рисунок 3 — Схема работы установки УФР-5
Пояснение к рисунку 3:
- Копьедержатель.
- Флюсопитатель.
- Ручной резак.
- Машинный резак.
Топливом служит пропан или бутан в сочетании с кислородом. Инжектор подает флюс из бачка струей режущего кислорода. В режущей зоне он создает тройное воздействие:
- термическое;
- химическое (в резе образуются жидкотекучие шлаки — их удаление осуществляется струей кислорода);
- абразивное (не сгоревшие частицы порошка и тугоплавкие окислы с поверхности кромок стираются, а после удаляются полностью).
Рисунок 4- Установка кислородно-флюсовой резки УФР-5
Пояснение к рисунку 4:
- Тележка.
- Циклон.
- Флюсопитатель.
- Редуктор кислорода.
- Резак.
- Шланги.
В таблице 2 указаны скорость обработки бетона и расход материала при различных методах резки.
Способ резки | Скорость обработки бетона см. куб/мин | Расход материала на 1 куб. дм удаляемого бетона | ||
труб, кг | кислорода, м. куб | флюса, кг | ||
Кислородно-флюсовая | 100 | — | 5,5 | 4,5 |
Кислородно-копьевая | 300 | 0,5 | 2,5 | 2,5 |
Дополнительное оборудование для работы
Рисунок 5 — Работа с газовым резаком
При работе с газовым резаком, потребуется следующее комплектующее:
- Огнетушитель.
- Защитное обмундирование (толстые кожаные перчатки, рабочая крепкая обувь с толстой кожаной подошвой, специальные очки или маска).
- Соответственная одежда (комбинезон стойкий к брызгам расплавленного металла, за неимением, можно использовать хорошо облегающую хлопчатобумажную одежду. Запрещено одевать вещи из синтетических и легковоспламеняющихся тканей, рваных и сильно изношенных по краям).
- Инструменты для замеров (линейка, угольник и карандаш-мелок из мыльного камня).
- Специализированная зажигалка для газового резака (запрещено использовать спички и зажигалки из-за соображений безопасности).
По спецодежде есть ГОСТ Р ИСО 11611 — 2011, просмотреть его можно по ссылке.
Стоимость услуг железобетонной резки
Цена на разрезание бетонных и железобетонных конструкций зависит от расходуемого количества кислорода и флюса, на которое непосредственно влияет толщина изделия.
Стоимость аппаратуры дорогая, поэтому, если работа единичная, лучше договорится с резчиками о выполнении работ и цене индивидуально. В среднем цена составляет 100 рублей за 1 метр.
Видео
На видео показан процесс кислородно-копьевой резки. С помощью специальной установки, резчик прожигает точечное отверстие в толстом слое железобетонной конструкции.
Раскрой чугуна, сталей с большим содержанием легирующих элементов, цветных металлов и сплавов выполняют преимущественно плазменно-дуговым способом. Но как быть, если они имеют слишком большую толщину и порезка данным методом невозможна? В таких случаях применяется резка кислородно-флюсовым копьем.
Отличительные особенности процесса
Популярность резки кислородно-флюсовым копьем толстостенных материалов обусловлена присутствием в процессе порошкообразных флюсов. При подаче совместно с кислородом они позволяют переплавить тугоплавкие окислы в жидкотекучие шлаки, которые впоследствии легко удаляются с места реза под воздействием высокого давления кислорода.
Частицы порошка сразу не сгорают, а попадают в глубину реза. Под воздействием ударного трения, которое они создают, с поверхности кромок удаляются тугоплавкие оксиды.
Конец копья перед резкой подвергается предварительному подогреву любым возможным способом (газовым пламенем, газокислородной горелкой) до температуры воспламенения в кислороде, подачу которого включают и регулируют на рукоятке.
От традиционного кислородного способа кислородно-флюсовый отличается следующими параметрами:
- Увеличенная мощность пламени для подогрева (в пределах 15-20 %) с целью равномерного нагрева частиц флюса до их воспламенения. В противном случае железный порошок будет воспламеняться на большом расстоянии от мундштука и не полностью сгорать, что ведет к неустойчивому процессу резки кислородным копьем.
- Большее расстояние от торца мундштука к поверхности разрезаемого материала для предупреждения его закупорки – около 15-60 мм в зависимости от толщины материала и используемого оборудования. Это снижает вероятность хлопков, которые являются результатом отскакивания флюса от поверхности металла, а также закупорки выходных отверстий резака.
- Скорость процесса в обязательном порядке подбирается с учетом расхода флюса.
- Большее сечение каналов для подачи режущего кислорода.
Оборудование для кислородно-флюсовой резки
Аппараты состоят из нескольких основных узлов:
Флюс может подаваться в резак по следующим схемам:
- Механическая – подача осуществляется при помощи шнека с электромеханическим приводом, установленного внизу емкости. Флюс захватывается ним и по шлангу проходит к резаку, где подхватывается струей режущего кислорода и доставляется на место резки. Как правило, применяется при использовании легковоспламеняемой смеси на основе алюминиево-магниевого порошка, подача которой непосредственно кислородом недопустима.
- Однопроводная – флюс подается из бачка под воздействием давления кислорода, что исключает необходимость наличия дополнительного инжектора в головке резака.
- Внешняя – кислород подводится к нижней и верхней части емкости с флюсом. Вверху емкости создается давление, внизу – кислород подается в шланг.
Резка высоколегированных марок сталей
Стали с большим содержанием хрома (от 5 % и более) перед резкой рекомендуется предварительно подвергать отпуску при температуре 300 °C, особенно при необходимости получения деталей сложной конфигурации. Это позволит предотвратить трещинообразование. А хромоникелевые стали, полученные методом холодной прокатки – смягчающей термообработке.
Для резки кислородно-флюсовым копьем запрещено применять флюсы повышенной влажности и те, которые на протяжении длительного периода времени находились во флюсопитателе.
Качественная поверхность реза получается, когда кислородное копье при разделительной резке удерживается перпендикулярно разрезаемому материалу либо углом вперед. Но данный метод возможен только при условии прямолинейного раскроя.
- смесь двууглеродистого натрия (98-99 %) с фосфористым кальцием (1-2 %);
- железный порошок;
- доломитизированный известняк;
- кварцевый песок.
Для кислородно-флюсовой резки чугуна используются все вышеперечисленные порошки кроме состава на основе двууглеродистого натрия и фосфористого кальция.
Раскрой цветных металлов
Благодаря сжиганию флюса при резке кислородно-флюсовым копьем вводится огромное количество дополнительного тепла, чем возмещается низкий тепловой эффект горения меди и ее сплавов и повышенный отвод тепла в обрабатываемый материал, что обусловлено высокой теплопроводностью. Но и эти металлы требуют предварительного подогрева места реза до температуры от 200 до 400 °C.
Расположение мундштука по отношению к поверхности разрезаемого материала выбирается в зависимости от его толщины и составляет 30-50 мм, что больше даже сравнительно с резкой высоколегированных сталей.
Также по сравнению с раскроем сталей с высоким содержанием хрома и других легирующих элементов процесс протекает в 2-4 раза медленнее и сопровождается повышенным расходом флюса:
- при резке меди – в 8-12 раз;
- при резке латуни – в 4-8 раз.
Поверхность реза не отличается высоким качеством, поэтому изделия впоследствии подвергаются механической обработке.
Алюминий режется этим способом довольно грубо.
- смесь железного (35-90 %) порошка с алюминиевым (10-65 %);
- состав на основе железного (50-55 %), алюминиевого (20-40 %) порошка и азотнокислого натрия (5-30 %).
Порезка бетона и железобетона
Помимо различных металлов резка кислородно-флюсовым копьем может применяться для бетона и различных ЖБИ толщиной до 1500 мм. От раскроя сталей процесс отличается тем, что необходимо использовать флюсы со значительно большей теплоэффективностью, поскольку бетон в кислороде не горит. Отлично подходит для этих целей смесь на основе 75-90 % железного и 10-25 % алюминиевого порошка. Для подачи флюса применяется внешняя схема.
В начале резки копье прижимается к поверхности материала, а в процессе работы его следует периодически вращать и перемещать возвратно-поступательными движениями. Также его допускается установить на специальной стойке, чтобы облегчить нагрузку, или держать в руках, если объем работы небольшой.
Области применения кислородно-флюсовой резки
Кислородно-флюсовая резка нашла широкое применение на металлургических предприятиях, заводах тяжелого машиностроения. Ее использование экономически оправдано при выполнении следующих работ:
- обрезка прибылей на стальных отливках;
- вырезания отверстий (леток) в сталеплавильных печах металлургического производства, которые служат для выпуска шлака, штейна или расплавленного металла;
- резка металлолома, неликвидов на копровых участках различных предприятий;
- поверхностная резка и разделка различных дефектов (шлаковые и песчаные включения, наплывы и т.п.) на поверхности отливок из высоколегированных сталей;
- ликвидация остатков шлака и стали (так называемых «козлов») в шлаковых камерах доменных, электрических и мартеновских печей;
- резка блюмов в холодном состоянии;
- прожигание отверстий в бетоне и железобетоне и их разделение.
Поскольку качество реза при кислородно-флюсовой резке относительно невысокое, данный метод применяется в основном в случаях, когда использование других способов раскроя экономически нецелесообразно либо просто невозможно.
Резка металлов и прожигание бетона кислородным копьем
В металлургии и строительстве нередко для прожигания металлических или железобетонных конструкций используется кислород. В этой статье рассмотрим, как осуществляется резка металлов кислородным копьем, а также специфику сверления бетонных изделий с применением точечного термического воздействия.
Как это работает
Приспособление для реализации данной технологии обладает очень простым устройством. Это стальная трубка подходящего диаметра, по которой подается кислород. Один конец трубки-копья подключается через вентиль и гибкий шланг к источнику O2, а второй прикладывается к обрабатываемой поверхности. Чтобы активировать пламя, рабочий конец нагревается до 1400 °С (для этого используется вспомогательный термоисточник, например газовый резак), после чего он начинает стремительно окисляться (гореть), повышая температуру до 2000 °С и поддерживая ее уже без стороннего нагрева. Для разжигания пламени O2 подается под низким давлением (около 1 атм), которое после образования устойчивого процесса повышается до рабочих показателей (5-6 атм).
Как отмечалось выше, резка кислородным копьем металлов и бетонных конструкций часто применяется в металлургической и строительной сферах. С помощью данного метода выполняют такие операции как:
- сверление металлических и ж/б изделий;
- отрезание скрапа;
- удаление прибыли литья;
- разделение плиты большой толщины.
Поскольку работа с O2 несет определенную опасность, такая резка должна выполняться с применением защитных средств: экрана, маски и специальной экипировки. Подробнее об особенностях эксплуатации данного газа и мерах предосторожности читайте в статье: Кислород технический: производство, эксплуатация и применение в промышленности.
Сверление и резка металлов кислородным копьем
После поджига и стабилизации пламени торец трубы прижимают к поверхности детали. Углубление в материал происходит за счет тепла, которое выделяется вследствие сгорания металла. Во время температурного воздействия необходимо периодически совершать трубой обратно-поступательные и вращательные действия для удаления образовавшегося шлака. В итоге получается отверстие круглой формы, размер которого обычно на 1-2 см больше диаметра трубки-копья.
В этом видео показан процесс сверления кислородным копьем:
Помимо сверления, подобная технология позволяет осуществлять раскрой детали. Для этих целей дополнительно применяется газовый резак, который предварительно делает канавку размером около 15 см, куда вводится копье. С помощью такого метода можно разрезать стальные болванки толщиной 2 м:
Резка крупных металлических деталей кислородным копьем
Во время рабочего процесса трубка-копье постоянно укорачивается, поэтому нуждается в периодической замене. Длина сгоревшей части в первую очередь зависит от характеристик обрабатываемого материала. К примеру, при прожигании чугуна на каждый метр углубления требуется около 20 м трубы (при этом расход O2 составляет 35 м³ на 1 м). Поэтому обработка чугунных изделий таким методом имеет невысокую производительность.
Прожигание бетонных конструкций
Как известно, бетон представляет собой смесь компонентов, каждый из которых имеет собственную температуру плавления. Так, керамзит оплавляется при 1100 °С, полевые шпаты – при 1400 °С, кремнезем – при 1700 °С, глинозем – при 2000 °С. При этом важно учитывать, что указанные материалы не окисляются под воздействием кислородной струи, то есть не поддерживают горение и не выделяют сами по себе тепло. Поэтому во время резки бетонного или ж/б изделия возникает необходимость в постоянном прижимании трубы с приблизительным усилием 30-50 кг. Поскольку при удалении расплавленной трубки поверхность очень быстро остывает, прожигать подобные неметаллические конструкции нужно без обратно-поступательных манипуляций, совершая лишь вращение в одну и другую сторону.
Прожигание (сверление) бетона кислородным копьем
Выполнять обработку бетона можно в любом положении, однако наиболее эффективным считается воздействие на поверхность снизу вверх. В этом случае шлак стекает между трубкой и стенкой отверстия под действием гравитационной силы, поэтому вероятность зашлаковывания невелика.
Увеличение мощности реза
Для повышения тепловой мощности внутрь трубки помещают пруток из низкоуглеродистой стали. Иногда его прихватывают сваркой с наружной стороны. Помимо улучшения процесса резки, такой подход позволяет сократить расход материала. Так же необходимо обратить внимание на качество используемого технического кислорода, которое имеет важное значение для эффективности процесса. Здесь Вы можете ознакомиться с типовыми объемами баллонов и формами поставки данного газа, соответствующего ГОСТ 5583 – 78 (чистота не менее 99,7%, 1ый сорт).
Еще более эффективным методом для увеличения мощности реза является применение мелкодисперсной железоалюминиевой смеси. При воспламенении такой порошок образует мощный факел длиной 5 см и температурой 4000 °С. В этом случае торец не прижимают к заготовке, а размещают на расстоянии 3-4 см с целью избегания закупорки отверстия шлаком.
Подводя итог, нужно отметить достаточную широту сферы применения кислородно-копьевой резки и сверления, особенно учитывая методику увеличения мощности с помощью вышеописанного метода, ввиду отличной производительности и минимальных требований к оборудованию. Данная технология может быть реализована практически в любых условиях, поскольку для этого необходимо иметь лишь стальную трубу и баллон, заправленный качественным O2 высокой чистоты.