Электродуговое напыление металла

Электродуговое напыление

Способы газотермического напыления

В зависимости от источника энер­гии для нагрева и транспортировки частиц материала покрытия разли­чают следующие способы напыления: электродуговое, газопламенное, вы­сокочастотное, плазменное, детона­ционное и упрочнение конденсацией металла с ионной бомбардировкой.

Процесс характеризуется тем, что получение расплава осуществляется в результате тепла электрической ду­ги, горящей между двумя электрод­ными проволоками, а распыление осуществляется струей сжатого воз­духа (рис. 9.2). Металл распыляется до частиц размером 10 — 50м км, тол­щина получаемого слоя может дости­гать 12 мм и выше. Однако его проч­ность и устойчивость к динамическим нагрузкам низкая. К другим недостаткам следует отнести перегрев и окисление напыляемого материала и выгорание легирующих элементов присадочного металла. Например, содержание углерода в сплаве по­крытия снижается на 40 — 60%, а кремния и марганца — на 10— 15 %. К достоинствам электродугового напыления относится высокая произ­водительность процесса (до 65 кг/ч), высокая износостойкость покрытия, а также простота и технологичность процесса.

Восстановление деталей электро­дуговым напылением включает под­готовку поверхности к нанесению по­крытия, непосредственно напыление и последующую механическую обра­ботку. Напыление как бы состоит из трех процессов: перевода электрод­ной проволоки в жидкую фазу, рас­пыление расплава струей воздуха и формирование покрытия. Процесс плавления металла электродной про­волоки характеризуется высокой температурой горения электриче­ской дуги, цикличностью и скоротеч­ностью явлений, протекающих в зоне плавления. При плавлении проволо­ки в процессе электродугового напыления происходят следующие циклы явлений:

горение пути между электродами и плавление их;

первый разрыв электрической це­пи электродов;

короткое замыкание и дальнейшее плавление электродов;

искровой разряд, зажигающий но­вую дугу.

Расплавление материала электро­дов происходит и в момент горения и короткого замыкания дуги. В момен­ты разрывов электрической цепи электродов плавление металла не происходит. Длительность каждого из указанных циклов составляет ты­сячные доли секунды. Длительность периода горения дуги при работе электродугового металлизатора на переменном токе составляет 43 — 49,5 % от длительности цикла всех явлений. Поэтому температура жид­кого сплава при различных рассмотренных циклах различна. Наиболее высокая температура будет при горе­нии дуги. Это благоприятно сказыва­ется на образовании большого числа мелкодисперсных частиц металла. В то же время при коротком замыкании температура расплава будет более низкая, и распыл получается с части­цами более крупными.

На структуру и свойства слоя значи­тельное влияние оказывает скорость движения частиц, их масса и разме­ры, температура во время полета. Большинство этих факторов зависит от режимов электродуговой металли­зации.

Скорость металловоздушной струи так же, как и температура частиц, из­меняется от зоны плавления до вос­станавливаемой (упрочняемой) по­верхности. Например, скорость час­тиц от небольшой начальной скоро­сти, равной 18,8 м/с, увеличивается до максимальных значений, а затем по мере удаления от источника тепла уменьшается. Ориентировочно мож­но считать максимальную скорость частиц распыленной стали не менее 190 м/с. Конечная скорость полета частиц на расстоянии 250 мм от сопла металлизатора составляет около 85 м/с, а время нахождения частиц в воздухе не более 0,003 с. Высокая ско­рость и малое время полета распы­ленных частиц металла позволяют им достигать поверхности детали, бу­дучи в пластическом состоянии. Так, температура части металла по оси струи на расстоянии от сопла аппа­рата, равном 50 мм, составляет 1030 °С, а на удалении 200 мм — 900 “С.

Высокая конечная скорость полета частиц металла, обладающих боль­шим запасом кинетической энергии, способствует плотному контакту час­тиц с микрорельефом поверхности детали и между собой. Увеличению контактной поверхности способству­ет пластическое состояние частиц. Некоторое влияние на снижение контактной прочности оказывает окис­ление восстанавливаемой (упрочняе­мой) поверхности, а также металли­ческих частиц в процессе полета и на­несения их на деталь. Известно, что Окислы являются более хрупкими, чем металл, и в этой связи снижают прочность нанесенного слоя. При ис­пользовании, например, в качестве транспортирующего газа азота проч­ность металлизационных покрытий заметно увеличивается, благодаря уменьшению содержания в них окис­лов.

Промышленностью серийно выпу­скается комплект оборудования для электродуговой металлизации КДМ-2, в который входят два электрометаллизационных аппарата ЭМ-14М,специализированный тиристорный источник питания ТИМЕЗ-500 с пультом управления и блоком кассет.

Характеристики комплекта а также наиболее широко используе­мых стационарных электро дуговых, металлизаторов ЭМ-12.И ЭМ-1,5 приведены в табл. 9.1.

Электродуговое напыление ис­пользуют для антикоррозионной за­щиты алюминием и цинком различ­ных вместимостей, труб и металло­конструкций. Для восстановления деталей данный способ напыления нашел более широкое распростране­ние за рубежом. Например, в Герма­нии все разновидности коленчатых валов карбюраторных и дизельных двигателей восстанавливают элект­родуговой металлизацией. Такие коленчатые валы по износостойкости не уступают новым.

Таблица 9.1. Техническая характеристика оборудования для электродугового напыления

На отечественных ремонтных пред­приятиях внедрен технологический процесс восстановления приварочной плоскости головок цилиндров, в основу которого положен способ электродуговой металлизации. На 4-м Горловском ПО“Авторемонт” орга­низован специализированный уча­сток восстановления напылением привалочной плоскости головок ци­линдров двигателей ЗМЗ-53. Для металлизации используют проволоку Св-Ак-5диаметром 2 мм. Режим ме­таллизации: ток дуги — 300 А, напряжение — 28 — 32 В, давление сжато­го воздуха — 0,4 — 0,6 МПа, дистан­ция металлизации — 80 — 100 мм; источник питания — ВДГИ-301, электрометаллизатор — ЭМ-12. Ис­пользуемая технология достаточно надежна, положительный результат получен при изменении давления сжатого воздуха в широких пределах, что особенно важно для реальных производственных условий. Толщина наносимого слоя — до 5 мм, продол­жительность операции —8 — 10 мин.

Читать еще:  Разметка металла перед сваркой

Установка для электродуговой ме­таллизации головок цилиндров пред­ставляет собой закрытую камеру с установленным в ней аппаратом мо­дели ЭМ-12. Головка блока цилинд­ров двигателя ЗМЗ-53 монтируется к перемещается в специальной кассе­те. Производительность установки — до 25 головок в смену. Потребляемая мощность — не более 10,8 кВт. Сжа­тый воздух подвергается двойной очистке, проходя через два масловлагоотделителя.

При обследовании головок цилинд­ров, восстановленных способом элек­тродугового напыления и повторно поступающих в ремонт, выявлено следующее: отсутствует отслоение покрытий от деталей и прогар покры­тий, а также подтекание охлаждаю­щей жидкости под покрытие. Корро­зионная стойкость покрытий не ниже, чем у основного металла.

Себестоимость восстановления го­ловок цилиндров двигателя ЗМЗ-53, восстановленных описанным спосо­бом, составляет 28,5 % от стоимости новых головок.

| следующая лекция ==>
Сущность процесса напыления | Высокочастотное напыление

Дата добавления: 2014-01-15 ; Просмотров: 3332 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Электродуговая металлизация

Процесс электродуговой металлизации известен давно, и начиная с 50-х годов прошлого столетия, широко применяется для антикоррозионной защиты металлоконструкций. При электродуговой металлизации используется косвенная электрическая дуга, которая горит между двумя токоведущими проволоками. Расплавленные капли электродного металла распыляются в направлении детали потоком сжатого воздуха или защитного газа. По мере плавления проволоки подаются в зону горения электрической дуги двумя парами подающих роликов. Схема процесса представлена на рис. 3.5.

Плавление электродов происходит в основном за счет энергии, выделяемой дугой в зоне приэлектродных пятен. Среднемассовая температура жидкого металла, распыляемого струей газа, находится в пределах от температуры плавления до температуры кипения. Такой значительный разогрев присадочного материала приводит к существенным потерям легирующих элементов вследствие угара. Устойчивый процесс распыления соответствует режимам горения дуги без коротких замыканий, что обеспечивается наличием динамического равновесия между средней скоростью плавления и скоростью подачи электродов.

Рис. 3.5. Схема процесса электродуговой металлизации:
1 – проволочные электроды; 2 – подающие ролики; 3 – изоляторы; 4 – воздуходувная трубка; 5 – деталь

При таком режиме на торце электродов сначала происходит накапливание расплавленного металла, а затем его распыление газовым потоком. Наряду с периодическим выбросом порций металла из межэлектродного промежутка при металлизации наблюдается также непрерывное струйное стекание перегретого металла с поверхности электродов. Размеры напыляемых частиц при электродуговой металлизации составляют примерно 100 мкм, что соответствует массе частицы 1,4-10-9 кг. Максимальный размер частиц, за редким исключением, не превышает 200 мкм. Металл, покинувший электроды, продолжает дробиться под воздействием газодинамических сил воздушной струи. Причем это диспергирование во многом зависит как от давления транспортирующего газа, так и от свойств расплавленного металла, в том числе от его перегрева.

Электродуговую металлизацию проводят при давлении сжатого воздуха или защитного газа 0,5-0,6 МПа. Сила тока при электродуговой металлизации колеблется в пределах:

  • от 35 до 100 А для легкоплавких металлов (алюминия и цинка);
  • от 70 до 200 А для сталей и сплавов на основе железа и меди.

Напряжение изменяется от 20 до 35 В. Производительность при напылении цинка составляет до 32 кг/ч, алюминия – до 9 кг/ч.

Скорость движения частиц металла в газовом потоке колеблется от 120 до 300 м/с. Это определяет кратковременность их переноса на поверхность детали (время полета составляет тысячные доли секунды) и значительную кинетическую энергию, которая в момент соударения с поверхностью детали переходит в тепловую и вызывает дополнительный разогрев зоны контакта. Удар в момент соприкосновения с поверхностью детали вызывает уплотнение металлизованного слоя и снижает его пористость до 10-20 %.

Электродуговой металлизацией можно получить слои в широком диапазоне толщин от 10 мкм до 1,5 мм для тугоплавких металлов и 3,0 мм для легкоплавких. Производительность электродуговой металлизации составляет 3-20 кг/ч.

Металлизованный слой может наноситься на наружные и внутренние поверхности конструкций под углом распыления расплавленного металла по отношению к поверхности детали от 45° до 90°. Для получения высокого качества покрытия струю распыленного металла направляют перпендикулярно к обрабатываемой детали и выдерживают расстояние от сопла металлизато-ра до изделия (детали) не более 150-200 мм. В табл. 3.4 представлены данные о влиянии дистанции распыления на характеристики металлизованного слоя.

Таблица 3.4. Физико-механические свойства покрытия при разной дистанции металлизации.

Расстояние от сопла до детали, мм

Прочность сцепления, МПа

Содержание в покрытии оксидов, %

Твердость покрытия (HV)

Предел прочности, МПа:
При растяжении
При сжатии

*Покрытия получены при силе тока 90 А и напряжении 30 В.

С целью повышения эффективности нанесения покрытий электрической дугой ее интенсифицируют, обдувая потоком газа, накладывая на нее электромагнитные поля или применяя разряды с очень высокой плотностью тока на электродах. Высокую плотность тока получают уменьшением сечения электродов или применением сильноточных разрядов. Уплотнение металлизованных слоев обеспечивают, совмещая процесс напыления и дробеструйной обработки. Дробь направляется так, что ее удары вызывают пластическую деформацию только что напыленного слоя.

Читать еще:  Настольный плоскошлифовальный станок по металлу

Поверхность, предназначенная под металлизацию, должна быть очищена от грязи, масел, ржавчины. Подготовку поверхности чаще всего производят дробеструйной (пескоструйной) обработкой. Перед обработкой поверхности обезжиривают. Для обеспечения удовлетворительной адгезии время между операциями подготовки и металлизации не должно превышать 2-х ч. Для снижения термических внутренних напряжений процесс металлизации следует вести с перерывами между отдельными проходами, не допуская перегрева металлизируемой поверхности.

Вначале металл наносят на участки детали с резкими переходами, углами, галтелями, уступами, а затем осуществляют металлизацию всей поверхности, равномерно наращивая металл. Требуемые размеры, качество отделки и правильную геометрическую форму поверхностей, покрытых распыленным металлом, получают при окончательной механической обработке.

Металлизацию с последующей окраской применяют для защиты стальных металлоконструкций, относят к комбинированными покрытиям. Срок службы комбинированных покрытий за счет синергизма существенно больше, чем сумма сроков службы каждого слоя в отдельности, поэтому их следует применять для долговременной защиты от коррозии стальных конструкций, которые будут эксплуатироваться в средне- и сильноагрессивных средах внутри зданий, на открытом воздухе и под навесами, а также в жидких органических и неорганических средах. Покрытия, полученные методами электродуговой металлизации, применяют для защиты стальных конструкций и железобетонных опор мостов, топливных резервуаров, трубопроводов, оборудования, используемого в тепловых сетях, нефтяной и химической промышленности.

Присадочные материалы

Выбор материала для нанесения покрытия зависит от условий эксплуатации и основных изнашивающих процессов, протекающих на поверхностях. Основным видом присадочного материала является непрерывный проволочный электрод. Применяют как проволоки сплошного сечения, так и порошковые диаметром от 1,0 до 2,5 мм. Скорость подачи проволоки варьируется от 220 до 850 м/ч.

Проволоки сплошного сечения используются преимущественно для создания покрытий на поверхностях под неподвижные посадки (из малоуглеродистых сталей Св-08, Св-10ГА) и подвижных соединений (из высокоуглеродистых сталей Нп-50, Нп-85 и легированных сталей Нп-30Х13, Нп-40Х13, Нп-60Х3В10Ф). Для получения покрытий с высокой твердостью используют порошковые проволоки.

Для создания антикоррозионных покрытий применяются высоколегированные проволоки на железной основе (Св-08Х18Н8Г2Б, Св-07Х18Н9ТЮ, Св-06Х19Н9Т, Св-07Х19Н10Б, Св-08Х19Н10Г2Б, Св-06Х19Н10М3Т), а также проволоки из цветных металлов (никеля, цинка, меди и др.).

Основными цветными антикоррозионными материалами, наносимыми способом электродуговой металлизации на стальные конструкции и изделия, являются цинк, алюминий и их сплавы. Цинковые покрытия являются коррозионностойкими в морской воде и в условиях морской атмосферы. Наибольшее влияние на скорость коррозии цинка в индустриальной атмосфере промышленных городов оказывает содержание в ней окислов серы, а также других веществ (например, хлора и паров соляной кислоты), образующих с цинком гигроскопические соединения.

Алюминий по своим химическим свойствам очень активен, но в присутствии окислителей покрывается защитной пленкой, резко понижающей его химическую активность. Коррозионная стойкость алюминия зависит от условий, в которых происходит коррозия. В сильно загрязненной атмосфере алюминий корродирует во много раз быстрее, чем в чистом воздухе. Алюминий стоек в горячей и мягкой воде.

Возможно Вас так же заинтересуют следующие статьи:

Электродуговая металлизация

Электродуговая металлизация – процесс нанесения покрытия, при котором для нагрева/расплава проволочного материала используется электричество. Постоянный ток различной полярности подается на две расходные проволоки, благодаря чему зажигается дуга, происходит расплавление проволок и отделяемые частицы материалы потоком сжатого воздуха переносятся на поверхность напыления.
Использование постоянного тока позволяет стабилизировать дуговой разряд и тщательно контролировать параметры напыления.

Рис. 1. Электродуговая металлизация

Особенности
Электродуговая металлизация характеризуется отличной, по сравнению с другими технологиями, производительностью, высоким КПД. Помимо этого, оборудования для электродуговой металлизации отличается простотой использования, неприхотливостью использования, невысокими требования к инфраструктуре подключения, что позволяет ее использовать как в условиях цеха со стационарными линиями электричества и сжатого воздуха, так и в условиях вне цеха, где достаточно дополнительно использовать широко распространенные промышленные компрессора и электрогенераторы.
Материалы для электродуговой металлизации производятся в виде проволок, в том числе и порошковых.
Электродуговая металлизация предполагает использование электрической энергии для расплавления материала. Отсутствие открытого пламени и горения, как такого, позволяют применять электродуговую металлизацию в закрытых пространствах. Широко известно применение электродуговой металлизации для напыления внутренних поверхностей цистерн хранения и перевозки пищевых и нефтепродуктов, балластных танков; допускается применение металлизации и внутри вентилируемых шахт и т.д.
Спектр используемых материалов ограничивается обязательным наличием в подаваемом материале проводящих элементов. Электродуговая металлизация не применима для нанесения полимерных, керамических и других непроводящих материалов.

Применение
Наиболее распространенным использованием электродуговой металлизации является нанесение легкоплавких материалов (Zn, Al, их сплавы). Системы покрытий на основе цинка, алюминия, сплавов на их основе а также добавления магния титана и других элементов характеризуются низким электрохимическим потенциалом, что позволяет использовать их в целях защиты от коррозии конструкционных сталей .
Такие покрытия предотвращают коррозию не только тем, что изолируют стальные поверхности от коррозионного воздействия окружающей среды как лакокрасочные материалы. Отрицательный, по отношению к стали электродный потенциал гальванически защищает поверхность от коррозии даже в случае локальных повреждений покрытия. Кроме того, при применении таких покрытий в принципе невозможно развитие подпленочной коррозии, что очень часто происходит при использовании лакокрасочных материалов.
Еще одно существенное преимущество металлизационных покрытий заключается в высокой адгезии металлических покрытий. Причем с течением времени адгезия только возрастает за счет взаимной диффузии металлов, тогда как любое лакокрасочное покрытие рано или поздно теряет адгезию и отслаивается ввиду принципиальной разнородности материалов.

Читать еще:  Глубокое сверление отверстий в металле технология

Рис.2. Нанесение антикоррозионного покрытия на зону переменной смачиваемости морской платформы.

Помимо антикоррозионных покрытий, электродуговая металлизация может применяться для нанесения износостойких покрытий.
Использование специально разработанных порошковых проволок подразумевает трехстадийный процесс образования покрытия: сначала от энергии металлизатора расплавляется оболочка порошковой проволоки, плавление представляет собой эндотермическую реакцию; выделяющееся при плавлении оболочки тепло проплавляет шихтовую смесь, наполняющую шнуровой материал.
Электродуговая металлизация, в отличие от широко применимого для нанесения износостойких покрытий высокоскоростного напыления, обладает большей производительностью и мобильность, что делает ее отличной альтернативой для создания износостойких покрытий, при этом нанесение покрытий ЭДМ значительно дешевле, однако отличительной особенностью от HVOF-покрытий является высокая пористость, что может в некоторых случаях привести к коррозии, а также меньший уровень адгезии.

Рис.3. Электродуговая металлизация износостойких

«NeoMetall»

Электродуговая металлизация Zn.Al.

Московская область г.Подольск пр-д Металлургов 6 +7-985-838-88-17
neometall@inbox.ru

Метод цинкования металла

Методы цинкования металла могут быть разными. Среди них стоит назвать

Газодинамический
Гальванический
Горячее цинкование
Холодное цинкование
Диффузионный
Электродуговая металлизация

Технология

Газодинамический способ – это нанесение защитного слоя с помощью сверхзвукового потока. Обрабатываемая поверхность может иметь различную форму.

Гальванический способ – это электрохимический процесс цинкования в специальном барабане. Иногда после подобной обработки деталь приобретает матовый белый оттенок, поэтому нередко эта методика используется в декоративных целях. К тому же защитный слой получается небольшим. Соответственно, и адгезионные свойства у изделий, подвергавшихся такому цинкованию, также не самые лучшие.

Горячее цинкование – это когда изделия окунают в ванну с расплавленным цинком. Температура, при которой выполняется данная процедура, может достигать 460°. Данный способ широко распространен, потому что на такое цинкование металла цены остаются относительно низкими.

Холодное цинкование металла не требует сложных подготовительных работ. На обрабатываемую поверхность наносится грунтовка либо специальный краситель. В покрытии содержится до 98 процентов цинковой пудры. Благодаря такой методике изделие приобретает не только хорошие качественные показатели на длительный период, но и эстетичный внешний вид.

Термодиффузионный метод предполагает обработку изделия при высоких температурах. Температурный режим зависит от марки материала и вида заготовки. Преимущества такого способа – повышенная твердость изделий.

Электродуговоая металлизация -это обработка изделия напылением металла(Zn.Al.).Обрабатываемая поверхность может иметь любую форму и размер.

Электродуговая металлизация

Электродуговая металлизация металлоконструкций является самым эффективным методов антикоррозионной защиты. Технологический процесс электродуговой металлизации позволяет продлевать срок эксплуатации изделий из металла защищая его от воздействия окружающей среды и механических повреждений.

Электродуговая металлизация защищает различные металлоконструкции в условиях агрессивной среды.

Компания NeoMetall предлагаем наиболее эффективные и выгодные услуги по антикоррозионной обработке металлоконструкций методом электродуговой металлизации. Компания NeoMetall успешно занимается нанесением алюминиевых, цинковых, покрытий на металлоконструкции, применяемые в различных сферах и отраслях,электродуговая металлизация металлоконструкций остаётся самым надёжным методом защиты от коррозии и прочих воздействий.

Основные преимущества металлизации

Возможность изгиба и выправления обработанных конструкций (в зависимости от толщины защитного покрытия обработанные изделия выдерживают изгиб при радиусе до двух толщин без повреждения антикоррозионной поверхности),
металлизация производится при разных внешних температурах, что существенно расширяет технологические возможности антикоррозионной обработки – при нанесении покрытий не происходит нагревания поверхностей свыше 70-100 °C,
металлические защитные покрытия, нанесённые электродуговым методом, имеют свойство самовосстановления, то есть при механическом повреждении поверхности, они просто «заживают» на металле,

При электродуговой металлизации нанесённые покрытия выдерживают температуры до -60 °C, не отслаиваясь и не разрушаясь, что позволяет использовать их даже на крайнем севере,

Электродуговая металлизация, в сравнении с нанесением лакокрасочных материалов, производится только в один слой, что позволяет обрабатывать большие поверхности быстрее,

Защитные металлические покрытия не содержат органических веществ, что позволяет хранить в обработанных резервуарах различные жидкости,

Электродуговые металлизационные материалы обладают большой адгезионной прочностью, покрытия не отслаиваются от поверхности нанесённых на металлоконструкции .

Электродуговые металлизационные покрытия могут применяться для защиты больших поверхностей различных сооружений непосредственно на месте их эксплуатации.

При этом стоит отметить, что процесс металлизации (на фоне прочих вариантов антикоррозионной защиты) позволяет не прибегать к повторным обработкам в течение очень долгого времени, вплоть до 30 лет. Процесс дуговой металлизации возможен в условиях зимы.

Методом электродуговой металлизации наносят антикоррозионные защитные покрытия из цинка и алюминия или из их сплавов на различные по габаритам конструкции, требующие защиты от коррозии, при этом срок службы этих покрытий может достигать 50 лет

Нанесение других специальных покрытий методом электродуговой металлизации из электропроводных проволочных материалов

Поэтому компания «NeoMetall» предлагает электродуговую металлизацию в качестве передовой и инновационной технологией антикоррозионных услуг.

Ссылка на основную публикацию
Adblock
detector