Взаимодействует ли медь с водой

All Metals

Металлы и Металлургия

Алюминий
Ванадий
Вольфрам
Германий
Железо
Золото
Кобальт
Магний
Марганец
Медь
Молибден
Никель
Ниобий
Олово
Палладий
Платина
Плутоний
Свинец
Серебро
Тантал
Титан
Уран
Хром
Цинк
Цирконий
  1. Металлургия России
  2. О металлах
  3. Медь
  4. Химические свойства

Химические свойства

Химическая активность меди невелика. В сухой атмосфере медь практически не изменяется. Во влажном воздухе на поверхности меди в присутствии углекислого газа образуется зеленоватая пленка состава Cu(OH)2·CuCO3. Так как в воздухе всегда имеются следы сернистого газа и сероводорода, то в составе поверхностной пленки на металлической меди обычно имеются и сернистые соединения меди. Такая пленка, возникающая с течением времени на изделиях из меди и ее сплавов, называется патиной. Патина предохраняет металл от дальнейшего разрушения.

При нагревании на воздухе медь тускнеет и в конце концов чернеет из-за образования на поверхности оксидного слоя. Сначала образуется оксид Cu2O, затем — оксид CuO.

В сухом воздухе и кислороде при нормальных условиях медь не окисляется. Но она достаточно легко вступает в реакции: уже при комнатной температуре с галогенами, например с влажным хлором образует хлорид CuCl2, при нагревании с серой образует сульфид Cu2S, с селеном. Но с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют, например, соляная и разбавленная серная кислоты. Но в присутствии кислорода воздуха медь растворяется в этих кислотах с образованием соответствующих солей:

Кроме того, медь можно перевести в раствор действием водных растворов цианидов или аммиака:

При нагревании металла на воздухе или в кислороде образуются оксиды меди: желтый или красный Cu2O и черный CuO. Повышение температуры способствует образованию преимущественно оксида меди(I) Cu2O. В лаборатории этот оксид удобно получать восстановлением щелочного раствора соли меди(II) глюкозой, гидразином или гидроксиламином:

Эта реакция – основа чувствительного теста Фелинга на сахара и другие восстановители. К испытываемому веществу добавляют раствор соли меди(II) в щелочном растворе. Если вещество является восстановителем, появляется характерный красный осадок.

Поскольку катион Cu+ в водном растворе неустойчив, при действии кислот на Cu2O происходит либо дисмутация, либо комплексообразование:

Оксид Cu2O заметно взаимодействует со щелочами. При этом образуется комплекс:

Оксиды меди не растворимы в воде и не реагируют с ней. Единственный гидроксид меди Cu(OH)2 обычно получают добавлением щелочи к водному раствору соли меди(II). Бледно-голубой осадок гидроксида меди(II), проявляющий амфотерные свойства (способность химических соединений проявлять либо основные, либо кислотные свойства), можно растворить не только в кислотах, но и в концентрированных щелочах. При этом образуются темно-синие растворы, содержащие частицы типа [Cu(OH)4] 2– . Гидроксид меди(II) растворяется также в растворе аммиака:

Гидроксид меди(II) термически неустойчив и при нагревании разлагается:

Большой интерес к химии оксидов меди в последние два десятилетия связан с получением высокотемпературных сверхпроводников, из которых наиболее известен YBa2Cu3O7. В 1987 было показано, что при температуре жидкого азота это соединение является сверхпроводником. Главные проблемы, препятствующие его широкомасштабному практическому применению, лежат в области обработки материала. Сейчас наиболее перспективным считается изготовление тонких пленок.

Многие из халькогенидов меди – нестехиометрические соединения. Сульфид меди(I) Cu2S образуется при сильном нагревании меди в парах серы или в среде сероводорода. При пропускании сероводорода через водные растворы, содержащие катионы Cu 2+ , выделяется коллоидный осадок состава CuS. Однако, CuS – не простое соединение меди(II). Оно содержит группу S2 и лучше описывается формулой Cu I 2Cu II (S2)S. Селениды и теллуриды меди проявляют металлические свойства, а CuSe2, CuTe2, CuS и CuS2 при низких температурах являются сверхпроводниками.

Читать еще:  Медный колчедан применение

Практическое значение имеет способность меди реагировать с растворами солей железа (III), причем медь переходит в раствор, а железо (III) восстанавливается до железа (II):

Этот процесс травления меди хлоридом железа (III) используют, в частности, при необходимости удалить в определенных местах слой напыленной на пластмассу меди.

Ионы меди Cu 2+ легко образуют комплексы с аммиаком, например, состава [Cu(NH3)] 2+ . При пропускании через аммиачные растворы солей меди ацетилена С2Н2 в осадок выпадает карбид (точнее, ацетиленид) меди CuC2.

Медь в питьевой воде: опасность и способы устранения

Различные соединения меди, а также и сама медь, довольно распространены в окружающей среде, в том числе и в природных водах, которые служат источниками для водопроводной воды, поступающей в наши дома и квартиры.

В большинстве случаев концентрация меди в природных водах не превышает десятой доли мг/л, а вот в водопроводной воде она может быть существенно увеличена. Повышенное содержание меди в питьевой воде , а точнее в водопроводной, можно объяснить вымыванием этого металла из труб и арматуры.

Повышение количества меди в питьевой воде характеризуется неприятным вяжущим привкусом, кроме того она пагубно влияет на состояние человеческого организма. Когда концентрация меди достигает 1,0 мг/л в обязательном порядке требуется проводить очистку питьевой воды с использованием специальных систем водоочистки и водоподготовки.

Сточные воды служат основным источником поступления меди и других небезопасных веществ в природные воды, особенно, если речь идет о стоках химических предприятий или крупных организаций металлургической промышленности. Кроме того, в роли загрязнителя окружающих вод, который насыщает их медью, выступают так называемые альдегидные реагенты, применяемые с целью уничтожения водорослей.

Для того что определить, есть ли медь в питьевой воде , нужно обращать внимание на следующие признаки:

  • Даже в случае низкой концентрации меди жидкость приобретает вяжущий малоприятный вкус;
  • Вода имеет голубоватый оттенок;
  • При регулярном мытье головы водой с повышенным содержанием меди светлые волосы начинают приобретать зеленоватый оттенок;
  • На сантехнических устройствах, произведенных из нержавеющей стали, образуется несмываемый темный налет.

Еще одним доказательством того, что в воде содержится медь, является образование коррозии на медных составляющих элементах водопровода. Правда, стоит отметить, что этот признак не столь очевиден, как предыдущие.

Кроме того, что медь оказывает негативное влияние на водопроводные и сантехнические устройства, не стоит также забывать о том, что повышенное содержание этого металла в жидкости является опасной для человеческого здоровья. Специалисты относят медь к веществам третьего класса опасности, это свидетельствует о том, что концентрация этого метала свыше 1,0 мг/л является предельно допустимой.

В целях предотвращения пищевых отравлений различные предметы, изготовленные из меди, например, кастрюли или чайники, покрывают изнутри специальным защитным слоем, который не позволяет меди растворяться в подогреваемой воде. Хроническая интоксикация меди является губительной для организма, ее причисляют к одной из основных причин серьезных нарушений нервной системы, а также неправильного функционирования печени и почек, более того она может приводить к аллергодерматозам и перфорации носовой перегородки.

Все вышеперечисленное дает право говорить об острой необходимости водоочистки питьевой воды с использованием специально предназначенного оборудования, если содержание в ней меди превышает допустимую норму. Существует несколько распространенных способов, применяемых в случаях, когда есть медь в питьевой воде . Выбор способа, в первую очередь, зависит от количества опасного для здоровья вещества в жидкости. Наиболее часто специалисты рекомендуют использовать обратный осмос для решения проблемы повышенного содержания меди в жидкости.

Очистка питьевой и просто водопроводной воды от меди с использованием метода обратного осмоса воды требует применения блока химической промывки, фильтра тонкой очистки, блока различных фильтрующих модулей, а кроме того необходима система реагентной подготовки. Стоит отметить, что этот метод получил широкое распространение не только благодаря своей высокой эффективности, но также и благодаря своей экономичности, к тому же бытовые обратноосмотические фильтрующие установки отличаются небольшими габаритами и простотой монтажа и использования.

Читать еще:  Пайка меди в домашних условиях

Когда содержание меди в жидкости существенно превышает предельно допустимую норму необходимо применение метода ионного обмена, этот метод не так экономичен, как предыдущий, поскольку требуется больше реагентов, поэтому возрастают и эксплуатационные расходы.

5.3. Свойства меди и продуктов ее коррозии

Медь представляет собой тяжелый металл красного цвета, обладающий очень высокой тягучестью и ковкостью. Атомная масса меди 63,54; плотность 8,9 г/см2, температура плавления 1083°С. С различными элементами медь легко образует сплавы. В ряду напряжений металлов медь стоит правее водорода, нормальный электродный потенциал близок к потенциалу благородных металлов , поэтому химическая активность меди невелика. В нейтральной воде на поверхности меди образуется защитная пленка, которая приостанавливает дальнейшее окисление. При отсутствии кислорода и других окислителей медь не растворяется при комнатной температуре в серной кислоте при концентрации до 80%, в горячей серной кислоте медь растворяется при концентрации выше 80%. В азотной кислоте медь растворяется. В растворах соляной кислоты без доступа воздуха медь медленно окисляется, в присутствии воздуха медь реагирует с соляной кислотой очень быстро. Наличие в воздухе паров очень летучей СОЛЯНОЙ КИСЛОТЫ вызывает активную коррозию меди. Медь реагирует с растворами аммиака, хлористого аммония. Медь очень устойчива по отношению к щелочам. В растворах, щелочей на ее поверхности образуются пленки гидратированных оксидов меди, плохо растворимых в щелочах и защищающих металл от дальнейшего действия щелочи. Высока стойкость меди в различных органических растворителях. Химические свойства медных сплавов практически такие же, как у меди. Химическая активность основных составляющих продуктов коррозии на меди и медных сплавах следующая: закись меди куприт, красно-коричневого цвета, не растворяется ни в холодной, ни в горячей воде; при продолжительном кипячении медленно переходит в черную окись меди. В щелочах плохо растворяется, реагирует с кислотами. В холодной разбавленной серной кислоте разлагается с образованием металлической меди в виде мелкодисперсных частиц красно-коричневого цвета, в горячих растворах серной кислоты медленно переходит в раствор в виде средних и кислых сернокислых солей. В муравьиной кислоте растворяется плохо. Растворяется в растворах аммиака, углекислого аммония и трилона Б с образованием прочных комплексных соединений. Окись меди нерастворима ни в холодной, ни в горячей воде. Не реагирует с щелочами. Реагирует с кислотами. В растворах аммиака, углекислого аммония и в щелочном растворе сегнетовой соли практически не растворяется. Основная углекислая медь, малахит зеленого цвета, при 200°С разлагается на воду и черную окись меди. В холодной воде нерастворима, в горячей воде при кипячении разлагается с образованием окиси. В щелочах частично растворяется, частично переходит в синий гидрат окиси, быстро разлагающийся на воду и окись меди. В кислотах растворяется с бурным выделением углекислого газа. Легко растворяется в растворах углекислого аммония, аммиака и щелочном растворе сегнетовой соли.

Основная углекислая медь, азурит, синего цвета. Реакции те же, что и у малахита.

Основная сернокислая медь, синего цвета. Не растворяется ни в холодной, ни в горячей воде. Легко растворяется в кислотах, в растворах углекислого аммония и аммиака. В щелочи переходит в нерастворимый синий гидрат окиси, который разлагается с образованием окиси меди. Растворяется в щелочном растворе сегнетовой СОЛИ.

Хлористая медь бесцветная. Гигроскопична, в химическом отношении неустойчива. В холодной воде практически не растворяется. При нагревании медленно гидролизуется, образуя гидрат закиси, который затем разлагается на закись меди и воду. Растворяется в растворах углекислого аммония и аммиака. Хорошо растворяется В СОЛЯНОЙ кислоте и медленно – в муравьиной. В серной кислоте растворяется частично. В горячих растворах щелочей частично растворяется, остаток переходит в окись меди.

Читать еще:  Правильная последовательность производства меди

Основная хлорная медь, зеленого цвета» негигроскопична, нерастворима в холодной воде. При кипячении медленно разлагается с образованием черной закиси меди. Легко растворяется в кислотах, в растворах аммиака, углекислого аммония, в щелочном растворе сегнетовой соли. В щелочах частично растворяется, частично переходит в синий гидрат окиси, а затем в черную окись меди.

Медь (Cu)

Медь (купрум, свое название получила в честь острова Кипр, где было открытое крупное медное месторождение) является одним из первых металлов, который освоил человек – Медный век (эпоха, когда в обиходе человека преобладали медные орудия) охватывает период IV—III тысячелетия до н. э.

Сплав меди с оловом (бронза) был получен на Ближнем Востоке за 3000 лет до н. э. Бронза была предпочтительней меди, поскольку была более прочна и лучше поддавалась ковке.

Среднее содержание меди в земной коре составляет 4,7-5,5·10 -3 % по массе. Медь присутствует в природе, как в виде самородков, так и в соединений, наибольшее промышленное значение из которых имеют медный колчедан (CuFeS2), халькозин Cu2S и борнит Cu5FeS4. Разработка медных месторождений ведется открытым способом.


Рис. Строение атома меди.

Электронная конфигурация атома меди – 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 (см. Электронная структура атомов). У меди один спаренный электрон с внешнего s-уровня “перескакивает” на d-подуровень предвнешней орбитали, что связано с высокой устойчивостью полностью заполненного d-уровня. Завершенный устойчивый d-подуровень меди обусловливает ее относительную химическую инертность (медь не реагирует с водородом, азотом, углеродом, кремнием). Медь в соединениях может проявлять степени окисления +3, +2, +1 (наиболее устойчивые +1 и +2).


Рис. Электронная конфигурация меди.

Физические свойства меди:

  • металл, красно-розового цвета;
  • обладает высокой ковкостью и пластичностью;
  • хорошей электропроводностью;
  • малым электрическим сопротивлением.

Химические свойства меди

  • при нагревании реагирует с кислородом:
    O2 + 2Cu = 2CuO;
  • при длительном пребывании на воздухе реагирует с кислородом даже при комнатной температуре:
    O2 + 2Cu + CO2 + H2O = Cu(OH)2·CuCO3;
  • вступает в реакции с азотной и концентрированной серной кислотой:
    Cu + 2H2SO4 = CuSO4 + SO2 + 2H2O;
  • с водой, растворами щелочей, соляной и разбавленной серной кислотой медь не реагирует.

Соединения меди

Оксид меди CuO (II):

  • твердое вещество красно-коричневого цвета, не растворимое в воде, проявляет основные свойства;
  • при нагревании в присутствии восстановителей дает свободную медь:
    CuO + H2 = Cu + H2O;
  • оксид меди получают взаимодействием меди с кислородом или разложением гидроксида меди (II):
    O2 + 2Cu = 2CuO; Cu(OH)2 = CuO + H2O.

Гидроксид меди Cu(OH2)(II):

  • кристаллическое или аморфное вещество голубого цвета, нерастворимое в воде;
  • разлагается на воду и оксид меди при нагревании;
  • реагирует с кислотами, образуя соответствующие соли:
    Cu(OH2) + H2SO4 = CuSO4 + 2H2O;
  • реагирует с растворами щелочей, образуя купраты – комплексные сооединения ярко-синего цвета:
    Cu(OH2) + 2KOH = K2[Cu(OH)4].

Более подробно о соединениях меди см. Оксиды меди.

Получение и применение меди

  • пирометаллургическим методом медь получают из сульфидных руд при высоких температурах:
    CuFeS2 + O2 + SiO2 → Cu + FeSiO3 + SO2;
  • оксид меди восстанавливается до металлической меди водородом, угарным газом, активными металлами:
    Cu2O + H2 = 2Cu + H2O;
    Cu2O + CO = 2Cu + CO2;
    Cu2O + Mg = 2Cu + MgO.

Применение меди обусловливается ее высокой электро- и теплопроводностью, а также пластичностью:

  • изготовление электрических проводов и кабелей;
  • в теплообменной аппаратуре;
  • в металлургии для получения сплавов: бронзы, латуни, мельхиора;
  • в радиоэлектронике.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Ссылка на основную публикацию
Adblock
detector