Модуль упругости меди

Модуль Юнга (упругости)

Все твердые тела, как кристаллические, так и аморфные, имеют свойство изменять свою форму под воздействие приложенной к ним силы. Другими словами, они подвергаются деформации. Если тело возвращается к исходным размерам и форме после того, как внешнее усилие прекращает свое воздействие, то его называют упругим, а его деформацию считают упругой. Для любого тела существует предел приложенного усилия, после которого деформация перестает быть упругой, тело не возвращается в исходную форму и к исходным размерам, а остается в деформированном состоянии или разрушается. Теория упругих деформаций тел была создана в конце 17 века британским ученым Р. Гуком и развита в трудах его соотечественника Томаса Юнга. В их честь Гука и Юнга были названы соответственно закон и коэффициент, определяющий степень упругости тел. Он активно применяется в инженерном деле в ходе расчетов прочности конструкций и изделий.

Основные сведения

Модуль Юнга, (называемый также модулем продольной упругости и модулем упругости первого рода) это важная механическая характеристика вещества. Он является мерой сопротивляемости продольным деформациям и определяет степень жесткости. Он обозначается как E; измеряется н/м 2 или в Па.

Это важный коэффициент применяют при расчетах жесткости заготовок, узлов и конструкций, в определении их устойчивости к продольным деформациям. Вещества, применяемые для изготовления промышленных и строительных конструкций, имеют, как правило, весьма большие значения E. И поэтому на практике значения Е для них приводят в гигаПаскалях (10 12 Па)

Величину E для стержней поддается расчету, у более сложных конструкций она измеряется в ходе опытов.

Приближенные величины E возможно узнать из графика, построенного в ходе тестов на растяжение.

График теста на растяжение

E- это частное от деления нормальных напряжений σ на относительное удлинение ε.

Закон Гука также можно сформулировать и с использованием модуля Юнга.

Физический смысл модуля Юнга

Во время принудительного изменения формы предметов внутри них порождаются силы, сопротивляющиеся такому изменению, и стремящиеся к восстановлению исходной формы и размеров упругих тел.

Если же тело не оказывает сопротивления изменению формы и по окончании воздействия остается в деформированном виде, то такое тело называют абсолютно неупругим, или пластичным. Характерным примером пластичного тела является брусок пластилина.

Р. Гук исследовал удлинение стрежней из различных веществ, под воздействием подвешенных к свободному концу гирь. Количественным выражением степени изменения формы считают относительное удлинение, равное отношению абсолютного удлинения и исходной длины.

В результате серии опытов было установлено, что абсолютное удлинение пропорционально с коэффициентом упругости исходной длине стрежня и деформирующей силе F и обратно пропорционально площади сечения этого стержня S:

Величину, обратную α, и называют модулем Юнга:

ε = (Δl) / l = α * (F/S)

Отношение растягивающей силы F к S называют упругим напряжением σ:

Закон Гука, записанный с использованием модуля Юнга, выглядит так:

Теперь можно сформулировать физический смысл модуля Юнга: он соответствует напряжению, вызываемому растягиванием стержнеобразного образца вдвое, при условии сохранения целостности.

В реальности подавляющее большинство образцов разрушаются до того, как растянутся вдвое от первоначальной длины. Значение E вычисляют с помощью косвенного метода на малых деформациях.

Коэффициент жёсткости при упругой деформации стержня вдоль его оси k = (ES) / l

Модуль Юнга определяет величину потенциальной энергии тел или сред, подвергшихся упругой деформации.

Значения модуля юнга для некоторых материалов

В таблице показаны значения E ряда распространенных веществ.

Материал модуль Юнга E, ГПа
Алюминий 70
Бронза 75-125
Вольфрам 350
Графен 1000
Латунь 95
Лёд 3
Медь 110
Свинец 18
Серебро 80
Серый чугун 110
Сталь 200/210
Стекло 70

Модуль продольной упругости стали вдвое больше модуля Юнга меди или чугуна. Модуль Юнга широко применяется в формулах прочностных расчетов элементов конструкций и изделий в целом.

Предел прочности материала

Это предел возникающего напряжения, после которого образец начинает разрушаться.

Статический предел прочности измеряется при продолжительном приложении деформирующего усилия, динамический — при кратковременном, ударном характере такого усилия. Для большинства веществ динамический предел больше, чем статический.

Инструмент для определения предела прочности

Кроме того, существуют пределы прочности на сжатие материала и на растяжение. Они определяются на испытательных стенда опытным путем, при растягивании или сжатии образцов мощными гидравлическим машинами, снабженными точными динамометрами и измерителями давления. В случае невозможности достижения требуемого давления гидравлическим способом иногда применяют направленный взрыв в герметичной капсуле.

Допускаемое механическое напряжение в некоторых материалах при растяжении

Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия. По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга.

Читать еще:  Медный водопровод плюсы и минусы

Испытание на растяжение

Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны.

Материалы σраст
Бор 5700 0,083
Графит 2390 0,023
Сапфир 1495 0,030
Стальная проволока 415 0,01
Стекловолокно 350 0,034
Конструкционная сталь 60 0,003
Нейлон 48 0,0025

Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса.

Запасы прочности, закладываемые в ответственные конструкции, также многократны.

Коэффициент запаса прочности

Для количественного выражения запаса прочности при конструировании применяют коэффициент запаса прочности. Он характеризует способность изделия к перегрузкам выше номинальных. Для бытовых изделий он невелик, но для ответственных узлов и деталей, могущих при разрушении представлять опасность для жизни и здоровья человека, его делают многократным.

Точный расчет прочностных характеристик позволяет создать достаточный для безопасности запас прочности и одновременно не перетяжелить конструкцию, ухудшая ее эксплуатационные характеристики. Для таких расчетов используются сложные математические методы и совершенное программное обеспечение. Наиболее важные конструкции обсчитывают на суперкомпьютерах.

Связь с другими модулями упругости

Модуль Юнга связан с модулем сдвига, определяющим способность образца к сопротивлению против деформации сдвига, следующим соотношением:

E связан также и с модулем объёмной упругости, определяющим способность образца к сопротивлению против одновременного сжатия со всех сторон.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Модуль упругости меди

Модуль объёмной упругости () | Модуль Юнга () | Параметры Ламе () | Модуль сдвига () | Коэффициент Пуассона () | en:P-wave modulus ()

Wikimedia Foundation . 2010 .

Смотреть что такое “Модуль упругости” в других словарях:

Модуль упругости — – коэффициент пропорциональности между приложенным к телу напряжением (в упругой области) и обусловленной им величиной деформации. [Тарасов В. В. Материаловедение. Технология конструкционных материалов: учебное пособие для вузов / В. В.… … Энциклопедия терминов, определений и пояснений строительных материалов

модуль упругости — Модуль 2., характеризующий сопротивление материала упругой деформации [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] модуль упругости Отношение силы растяжения, приходящейся на единицу площади поперечного сечения … Справочник технического переводчика

МОДУЛЬ УПРУГОСТИ — (Modulus of elasticity) см. Юнга модуль. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

МОДУЛЬ УПРУГОСТИ — числовая величина, характеризующая зависимость между напряжением материала и его упругой деформацией. Указанная зависимость определяется законом Гука, устанавливающим, что напряжение равно М. у., умноженному на относительное удлинение (или… … Технический железнодорожный словарь

Модуль упругости Е — Отношение приращения напряжения к соответствующему приращению удлинения в пределах упругой деформации Источник: ГОСТ 1497 84: Металлы. Методы испытаний на растяжение оригинал документа … Словарь-справочник терминов нормативно-технической документации

модуль упругости — 3.8 модуль упругости: Параметр, определяемый величиной деформации под воздействием нагружения, используется для характеристики прочности дорожных одежд. Источник: ОДМ 218.2.024 2012: Методические рекомендации по оценке прочности нежестких… … Словарь-справочник терминов нормативно-технической документации

модуль упругости — [modulus of elasticity] величина, характеризующая упругие свойства материала. В случае малых деформаций, когда справедлив закон Гука, т.е. имеет место линейная зависимость между напряжениями и деформациями, модуль упругости представляет… … Энциклопедический словарь по металлургии

Модуль упругости (Е) — Modulus of elasticity Модуль упругости (Е). (1) Критерий жесткости материала; отношение напряжения вне предела пропорциональности к соответствующему напряжению. Если растягивающее напряжение 13,8 МПа приводит к удлинению на 1,0 %, модуль… … Словарь металлургических терминов

модуль упругости — tampros modulis statusas T sritis chemija apibrėžtis Įtempio ir santykinės deformacijos santykis. atitikmenys: angl. Young modulus; modulus of elasticity rus. модуль упругости; модуль Юнга ryšiai: sinonimas – Jungo modulis … Chemijos terminų aiškinamasis žodynas

модуль упругости — tampros modulis statusas T sritis fizika atitikmenys: angl. modulus of elasticity vok. Elastizitätsmodul, m rus. модуль упругости, m pranc. module d’élasticité, m … Fizikos terminų žodynas

Модуль деформации стали и её упругости

Основной главной задачей инженерного проектирования служит выбор оптимального сечения профиля и материала конструкции. Нужно найти именно тот размер, который обеспечит сохранение формы системы при минимальной возможной массе под влиянием нагрузки. К примеру, какую именно сталь следует применять в качестве пролётной балки сооружения? Материал может использоваться нерационально, усложнится монтаж и утяжелится конструкция, увеличатся финансовые затраты. На этот вопрос ответит такое понятие как модуль упругости стали. Он же позволит на самой ранней стадии избежать появления этих проблем.

Читать еще:  Как паять скрутку медных проводов

Общие понятия

Модуль упругости (модуль Юнга) — это показатель механического свойства материала, характеризующий его сопротивляемость деформации растяжения. Иными словами, это значение пластичности материала. Чем выше значения модуля упругости, тем меньше будет какой-либо стержень растягиваться при иных равных нагрузках (площадь сечения, величина нагрузки и другие).

Модуль Юнга в теории упругости обозначается буквой Е. Он является составляющей закона Гука (о деформации упругих тел). Эта величина связывает возникающее в образце напряжение и его деформацию.

Измеряется эта величина согласно стандартной международной системе единиц в МПа (Мегапаскалях). Но инженеры на практике больше склоняются к применению размерности кгс/см2.

Опытным путём осуществляется определение этого показателя в научных лабораториях. Сутью этого метода является разрыв гантелеобразных образцов материала на специальном оборудовании. Узнав удлинение и натяжение, при которых образец разрушился, делят переменные данные друг на друга. Полученная величина и является модулем (Юнга) упругости.

Таким образом определяется только модуль Юнга материалов упругих: медь, сталь и прочее. А материалы хрупкие сжимают до того момента, пока не появятся трещины: бетон, чугун и им подобные.

Механические свойства

Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала. А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:

  1. Жёсткостью называют произведение поперечного сечения профиля на модуль упругости. По этой величине можно судить о пластичности узла конструкции в целом, а не о материале отдельно. Единицей измерения являются килограммы силы.
  2. Продольное относительное удлинение — это отношение абсолютного удлинения материала-образца к его общей длине. К примеру, на стержень, длина которого равна 200 миллиметров, приложили некоторую силу. В результате он стал короче на 5 миллиметров. В результате относительное удлинение будет равняться 0,05. Эта величина безразмерная. Для более удобного восприятия иногда её переводят в проценты.
  3. Поперечное относительное удлинение рассчитывается точно так же, как и продольное относительное удлинение, но вместо длины берут диаметр стержня. Опытным путём было установлено, что для большего количества материала поперечное меньше продольного удлинения приблизительно в 4 раза.
  4. Коэффициент Пуассона. Это отношения относительной продольной к относительной поперечной деформации. При помощи этой величины можно полностью описать под воздействием нагрузки изменения формы.
  5. Модуль сдвига описывает упругие свойства под воздействием касательных свойств на образец. Иными словами, когда вектор силы направляется к поверхности тела под 90 градусов. Примером подобных нагрузок служит работа гвоздей на смятие, заклёпок на срез и пр. Этот параметр связан с вязкостью материала.
  6. Модуль упругости объёмной характеризует изменение объёма образца для разностороннего равномерного приложения нагрузки. Эта величина является отношением давления объёмного к деформации сжатия объёмной. Как пример можно рассматривать опущенный в воду материал, на который воздействует давление жидкости по всей его площади.

Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства. Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.

У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.

Модуль упругости

Стоит отметить, что эта величина непостоянная. Даже для одного материала она может иметь разное значение в зависимости от того, в какие точки была приложена сила. Кое-какие пластично-упругие материалы имеют практически постоянное значение модуля упругости при работе как на растяжение, так и на сжатие: сталь, алюминий, медь. А есть и такие ситуации, когда эта величина измеряется формой профиля.

Некоторые значения (величина представлена в миллионах кгс/см2):

  1. Алюминий — 0,7.
  2. Древесина поперёк волокон — 0,005.
  3. Древесина вдоль волокон — 0,1.
  4. Бетон — 0,02.
  5. Каменная гранитная кладка — 0,09.
  6. Каменная кирпичная кладка — 0,03.
  7. Бронза — 1,00.
  8. Латунь — 1,01.
  9. Чугун серый — 1,16.
  10. Чугун белый — 1,15.

Разница в показателях модулей упругости для сталей в зависимости от их марок:

  1. Подшипниковые стали (ШХ-15) — 2,1.
  2. Пружинные (60С2) и штамповые (9ХМФ) — 2,03.
  3. Нержавеющие (12Х18Н10Т) — 2,1.
  4. Низколегированные (40Х, 30ХГСА) — 2,05.
  5. Обычного качества (Ст. 6, ст.3) — 2,00.
  6. Конструкционные высокого качества (45,20) — 2,01.

Ещё это значение изменяется в зависимости от вида проката:

  1. Трос с сердечником металлическим — 1,95.
  2. Канат плетёный — 1,9.
  3. Проволока высокой прочности — 2,1.
Читать еще:  Пайка медных труб феном

Как видно, отклонения в значениях модулей упругой деформации стали незначительны. Именно по этой причине большинство инженеров, проводя свои расчёты, пренебрегают погрешностями и берут значение, равное 2,00.

Расчетные сопротивления и модули упругости
для строительных материалов


расчетные сопротивления строительных материалов

При расчете строительных конструкций нужно знать расчетное сопротивление и модуль упругости для того или иного материала. Здесь представлены данные по основным строительным материалам.

Таблица 1. Модули упругости для основных строительных материалов

Материал Модуль упругости
Е, МПа
Чугун белый, серый (1,15. 1,60) · 10 5
Чугун ковкий 1,55 · 10 5
Сталь углеродистая (2,0. 2,1) · 10 5
Сталь легированная (2,1. 2,2) · 10 5
Медь прокатная 1,1 · 10 5
Медь холоднотянутая 1,3 · 10 3
Медь литая 0,84 · 10 5
Бронза фосфористая катанная 1,15 · 10 5
Бронза марганцевая катанная 1,1 · 10 5
Бронза алюминиевая литая 1,05 · 10 5
Латунь холоднотянутая (0,91. 0,99) · 10 5
Латунь корабельная катанная 1,0 · 10 5
Алюминий катанный 0,69 · 10 5
Проволока алюминиевая тянутая 0,7 · 10 5
Дюралюминий катанный 0,71 · 10 5
Цинк катанный 0,84 · 10 5
Свинец 0,17 · 10 5
Лед 0,1 · 10 5
Стекло 0,56 · 10 5
Гранит 0,49 · 10 5
Известь 0,42 · 10 5
Мрамор 0,56 · 10 5
Песчаник 0,18 · 10 5
Каменная кладка из гранита (0,09. 0,1) · 10 5
Каменная кладка из кирпича (0,027. 0,030) · 10 5
Бетон (см. таблицу 2)
Древесина вдоль волокон (0,1. 0,12) · 10 5
Древесина поперек волокон (0,005. 0,01) · 10 5
Каучук 0,00008 · 10 5
Текстолит (0,06. 0,1) · 10 5
Гетинакс (0,1. 0,17) · 10 5
Бакелит (2. 3) · 10 3
Целлулоид (14,3. 27,5) · 10 2

Нормативные данные для рассчетов железобетонных конструкций

Таблица 2. Модули упругости бетона (согласно СП 52-101-2003)

Значения начального модуля упругости бетона при сжатии и растяжении Eb, МПа · 10 -3 ,
при классе бетона по прочности на сжатие
B10 B15 B20 B25 B30 B35 B40 B45 B50 B55 B60
19,0

24,0

27,5

30,0

32,5

34,5

36,0

37,0

38,0

39,0

39,5

Таблица 2.1 Модули упругости бетона согласно СНиП 2.03.01-84*(1996)

Примечания:
1. Над чертой указаны значения в МПа, под чертой – в кгс/см&sup2.
2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.
3. Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.
4. Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент
a = 0,56 + 0,006В.

Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)

Таблица 4. Расчетные значения сопротивления бетона сжатию (согласно СП 52-101-2003)

Таблица 4.1 Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)

Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)

Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)

Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

Таблица 6.2 Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

Таблица 7. Расчетные сопротивления для арматуры (согласно СП 52-101-2003)

Таблица 7.1 Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

Таблица 7.2 Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

Нормативные данные для расчетов металлических контрукций

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990)) листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений

Примечания:
1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).
2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.
3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см&sup2).

Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))

Примечания:
1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.
2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.
3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.

Ссылка на основную публикацию
Adblock
detector