Усадка алюминия при литье

Усадка сплавов при литье и методы его компенсации

Усадка – сокращение размеров тела при переходе из расплавленного состояния в твердое или с более нагретого в менее нагретом состоянии.

Различают объемную и линейную усадку.

– Объемная усадка – уменьшение объема тела.

– Линейная усадка – уменьшение размера тела в прямолинейном направлении (по длине или ширине).

Усадка в различных материалах различна и зависит от степени их нагрева, способа охлаждения и др. Степень усадки материала характеризуется отношением уменьшенного объема изделия к начальному его объему и выражается в процентах. Сокращение объема тела при охлаждении его на 1 градус называется коэффициентом усадки. Линейную усадку металлов и их сплавов, а также других материалов можно определить дилатометром.

Объемную усадку пластических масс в процессе их полимеризации или структурирования определяют с помощью оптического Катетометра. При изготовлении зубных протезов и лечебных аппаратов следует учитывать усадку материалов. Для более полного соответствия величины протезов, изготавливаемых подбирают материалы, имеющие минимальную усадку. Используют также такую ​​технологию изготовления и способы обработки изделий, которые наиболее полно компенсируют усадку материала. Например при отливке безпаяных мостовидных протезов из хромникелевой нержавеющей стали в качестве формовочной массы используют маршалит, пластифицированный гидролизованый этилсиликатом, или сухой кварцевый песок, который при определенном режиме термической обработки полностью компенсирует усадку стали, поэтому изготовленные протезы имеют точно определенную форму и размеры и без дополнительного препарирования зубов накладываются на опорные зубы.

При переходе металла из расплавленного состояния в твердое выделяют три периода усадки: усадка в жидком состоянии, усадка в период затвердевания и усадка в твердом состоянии.

1. Усадка металла в жидком состоянии, т.е. в состоянии от температуры заливки его в форму до появления первых кристаллов, характеризуется снижением поверхности жидкого металла в форме в следствии уменьшения объема сплава при охлаждении. Чем выше начальная температура металла, тем большее снижение уровня поверхности расплава в воронке формы для литья, однако на размеры отливки в разных ее участках и плотности массы это не влияет, так как недостаточное для заполнения формы количество сплава непрерывно поступает по литниковым ходам.

2. Усадка в период затвердения характеризуется непрерывным увеличением количества твердеющего металла и уменьшением количества его жидкой части. После затвердевания жидкой части сплава (точка S) этот период заканчивается. Затвердевание (кристаллизация) металла сначала начинается там, где наиболее низкая температура, то есть в участках соприкосновения его со стенками формы. В связи с этим контуры отливки и его размеры во втором периоде усадки почти всегда остаются постоянными. Более существенные изменения происходят внутри отливки. В связи с невозможностью поступления новой порции расплава для компенсации усадки внутри отливки в толще последней образуются усадочные полости или раковины. Объем усадочных раковин зависит от величины усадки, которая в свою очередь находится в прямой зависимости от величины отливки, степени нагрева расплава и его физико-химических свойств.

Размещение усадочных раковин зависит от размещения термического узла отливки, силы тяжести металла или силы, под воздействием которой происходит заполнение формы для литья расплавом.

На образование усадочных раковин влияет также теплопроводность формы и скорость охлаждения отливки. При искусственно замедленном охлаждении отливки можно достичь такого положения, при котором в период затвердевания усадочные микрораковины будут равномерно размещены по всему сечению отливки. При этом в разрезе или сломе деталь будет казаться хорошо отлитой, в то время как ее механические свойства действительности снижены, а плотность уменьшена. При металлографическом исследовании обнаруживается большое количество микропор.

3. Усадка в твердом состоянии. Этот период характеризуется упорядоченным расположением атомов в кристаллической решетке. Размеры этой решетки с понижением температуры уменьшается, чем объясняется уменьшение отрицательных и линейных размеров отливки. Для компенсации этой усадки следует использовать формовочные массы, имеющие достаточный коэффициент термического расширения.

Форму перед заливкой металла предварительно подогревают до температуры, при которой ее термическое расширение максимальное, и может компенсировать усадку материала в твердой фазе.

Условно разделяют усадку на три основных этапа, неправильно рассматривать эти процессы изолированно друг от друга. Усадка как в жидком, так и в твердом состоянии происходит параллельно, однако усадка жидкой части метала и сплавов чаще протекает быстрее, что обусловливает образование усадочных раковин.

На каждом этапе усадки предусмотрены свои профилактические приемы предупреждения образования усадочных раковин, однако наиболее важными из них является правильное определение термического узла и реальной компенсации усадки за счет термического расширения формы. Каждый термический узел должен иметь свой литник и дополнительный питатель (прибили).

Компенсация усадки металлов при литье достигается использованием технологических способов:

1. Изготовление моделей, которые выплавляются увеличенными на величину усадки размеров. Это достигается применением компенсационных лаков. Так, при отливке путем снятия восковых репродукций из модели (цельнолитые коронки, мостовидные протезы), препарированных зубов на модели перед восковым моделированием покрывают компенсационным лаком. При твердении лак дает пленку определенной толщины, которая соответствует величине усадки определенного сплава.

2. Применение материала типа «Адепта» для моделирования репродукций каркасов цельнолитых коронок. При этом внутренний колпачок толщиной 0,1 мм выполняет ту же функцию, что и компенсационный лак.

3. Литье каркасов съемных (бюгельных, ЧС пластиночных с металлическим базисом) на моделях с огнеупорной массы. Расширение модели компенсирует усадку сплава при отливке.

4. Построение литниковой системы с созданием резервных муфт, которые обеспечивают поступление металла в области расположения деталей каркасов, компенсируя усадку на периферии отливки.

5. Размещение литниковой системы в «центре тепла» опоки, а деталей отливки на периферии обеспечивает возможность постоянного поступления расплавленного сплава и профилактики образования пор в отливке.

Читать еще:  Активный флюс для пайки алюминия

6. Создание в литниковой системе дополнительных газоотводных каналов.

7. Использование для создания огнеупорных форм (опок, муфелей, формовочных масс, КТР которых соответствует величине усадки сплава, которые отливаются).

8. Использование для создания репродукций каркасов беззольных моделирующих материалов (восков, пластмасс) с минимальной усадкой.

9. Соблюдение технологии и температурных режимов при формовании и разогреве опок (муфель) и при отливке.

Брак литья алюминия

Два источника брака

Источниками брака при литье алюминия являются два явления, которые могут действовать как каждый отдельно, так и совместно:

  1. Постоянное, прогрессирующее окисление алюминиевого расплава и насыщение его водородом.
  2. Уменьшение удельного объема алюминия при его переходе из жидкого в твердое состояние.

Окисление и насыщение водородом

В результате непрерывного окисления алюминиевого расплава и насыщения его водородом в алюминиевой отливке возникают следующие дефекты, которые являются причинами брака готовых отливок:

  • поры;
  • насыщение воздухом;
  • включения;
  • нарушение герметичности;
  • поверхностные дефекты;
  • низкая прочность;
  • низкая пластичность.

Для предотвращения или ослабления влияния окисления и насыщения водородом принимают следующие меры:

  • обработку металла в печи и его дегазацию;
  • жесткий контроль температур плавления и литья;
  • фильтрование расплава.

При переходе алюминия из жидкого в твердое состояние растворенный в нем водород выделяется и во взаимодействии с оксидами создает проблемы с пористостью в готовых отливках.

Главной задачей при обеспечении высокого качества алюминиевого расплава является поддержание скорости окисления расплава в определенных рамках. Для этого предпринимаются следующие действия:

  • высокое качество исходных чушек;
  • современное литейное оборудование и технологии литья;
  • контроль загрузки шихты (сухая шихта, быстрое расплавление);
  • контроль температуры при плавлении и литье;
  • очистка расплава и контроль качества расплава;
  • меры безопасности при обработке и транспортировке расплава и его разливке.

Усадка

Из-за уменьшения удельного объема алюминия при его затвердевании могут возникать следующие дефекты, ведущие к браку литейной продукции:

  • раковины;
  • усадка;
  • насыщение воздухом;
  • нарушение герметичности;
  • низкая прочность и пластичность.

Для предотвращения или ослабления влияния уменьшения удельного объема алюминия при его затвердевании принимают следующие меры:

  • оптимальное размещение литниковой системы;
  • температурный контроль процесса затвердевания;
  • измельчение зерна;
  • применение модификаторов сплава.

Уменьшение удельного объема при переходе алюминиевого сплава из жидкого в твердое состояние может приводить к уменьшению объема— в зависимости от литейного сплава — до 7 %. При неблагоприятных условиях часть этой разницы в объеме может быть причиной брака литых алюминиевых изделий — усадочных полостей, пор или разрывов.

Для того, чтобы получить хорошую отливку необходимо обеспечивать возможность поступления дополнительного жидкого металла к усаживаемой микроструктуре в течение всего процесса затвердевания отливки.

При литье под давлением это обеспечивают путем повышенного давления расплава, а при гравитационном литье — за счет высоты прибыльных надставок.

Влияние типа затвердевания

Важен также тип затвердевания. В алюминиево-кремниевых сплавах — эвтектических силуминах с содержанием кремния около 13 % при затвердевании сразу образуется твердая оболочка. По другому происходит затвердевание в доэвтектических силуминах, а также в алюминиево-магниевых сплавах и сплавах с легированием медью: сначала образуется дендритная структура, а затем затвердевают остальные компоненты с более низкой температурой затвердевания.

Влияние системы литья

В гравитационном литье, к которому относится, например, литье в кокиль, подачу расплава в литниковую систему производят в самом критическом или «толстом» участке отливки. Не контролируемое или турбулентное наполнение полостей литейной формы имеет отрицательное влияние на качество отливки.

Литниковая система, которая позволяет контролировать движение фронта затвердевания от дна формы до входа в литниковую системы является очень полезной для качества отливки. В хорошей системе литья заполнение формы начинается с ее нижней части и всегда так, чтобы слои нового горячего металла «ложились» на нижние, уже затвердевшие слои.

Система литья такого типа может частично компенсировать негативное влияние, которое оказывает объемное сокращение алюминия при его затвердевании и в то же время направлять расплавленный металл в форму таким образом, чтобы избежать нового его окисления из-за турбулентности течения.

Отливки из цветных сплавов. Технология литья в кокиль

Отливки из алюминиевых сплавов

Согласно ГОСТ 1583 – 73 литейные алюминиевые сплавы разделены на пять групп (I – V). Наилучшими литейными свойствами обладают сплавы группы I – силумины. Для них характерны хорошая жидкотекучесть, небольшая линейная усадка (0,9 – I %), стойкость к образованию трещин, достаточная герметичность. Силумины марок АЛ2, АЛ4, АЛ9, АК7, АК9, АК12 широко используют в производстве, однако они склонны к образованию грубой крупнозернистой эвтектики в структуре отливки и растворению газов.

Сплавы группы II (так называемые «медистые силумины») также нередко отливают в кокиль. Эти сплавы, обладающие хорошими литейными свойствами и большей прочностью, чем силумины группы I, менее склонны к образованию газовой пористости в отливках.

Сплавы групп III – V имеют более низкие литейные свойства по сравнению со сплавами групп I и II – пониженную жидкотекучесть, повышенную усадку (до 13%), склонны к образованию трещин, рыхлот и пористости в отливках. Получение отливок из сплавов III—V групп сопряжено со строгим соблюдением технологических режимов для обеспечения хорошего заполнения формы и питания отливок при затвердевании.

Все литейные алюминиевые сплавы в жидком состоянии интенсивно растворяют газы и окисляются. При их затвердевании газы выделяются из раствора и образуют газовую и газоусадочную пористость, которая снижает механические свойства и герметичность отливок. Образующаяся на поверхности расплава пленка оксидов при заполнении формы может разрушаться и попадать в тело отливки, снижая ее механические свойства и герметичность. При высоких скоростях движения расплава в литниковой системе пленка оксидов, перемешиваясь с воздухом, образует пену, которая попадает в полость формы, приводя к образованию дефектов в теле отливки.

Читать еще:  Анодное оксидирование алюминия и его сплавов

Температуру заливки расплава в кокиль назначают в зависимости от химического состава и свойств сплава, толщины стенки отливки и ее размеров. Для силуминов типа АЛ2, AJI4, АЛ9 ее принимают о пределах 700 – 750 о С, для сплавов с широким интервалом затвердевания, в частности для сплавов типа АЛ19, обладающих пониженной жидкотекучестью, – в пределах 720 – 770 о С.

Продолжительность выдержки отливки в кокиле назначают с учетом ее размеров и массы. Обычно отливки охлаждают в форме до температуры около 400 о С.

Отливки из магниевых сплавов

Магниевые литейные сплавы по сравнению с алюминиевыми обладают худшими литейными свойствами. Они обладают пониженной жидкотекучестью, большой усадкой (3,2 – 1,5%), склонностью к образованию горячих трещин, пониженной герметичностью, высокой склонностью к окислению в жидком и твердом состояниях, способностью воспламеняться в жидком состоянии. Магниевые сплавы имеют большой интервал кристаллизации, склонны к растворению газов и поэтому в отливках часто образуются микрорыхлоты. Отливки из магниевых сплавов склонны к короблению при затвердевании и термической обработке.

Наибольшее применение для литья в кокиль нашли сплавы марок МЛ5 и МЛ6 (системы Mg – Al – Zn), сплав МЛ12 (системы Mg – Zn – Zr) и МЛ10 (системы Mg – Nd – Zr).

Температура заливки магниевых сплавов зависит от их химического состава и обычно на 100 – 150 о С превышает температуру ликвидуса, что вызвано пониженной жидкотекучестью этих сплавов. Обычно температура заливки составляет 700 – 750 о С для тонкостенных отливок и 650 – 700 о С для массивных и толстостенных отливок.

Отливки из медных сплавов

Литьем в кокиль изготовляют отливки из латуней, бронз, а также из чистой меди. Латуни обычно имеют небольшой интервал кристаллизации, хорошую жидкотекучесть, но большую усадку (1,5 – 2,5%). Латуни мало склонны к образованию усадочной пористости, но интенсивно растворяют водород. Эта особенность всех медных сплавов наиболее сильно проявляется у кремнистых латуней, отливки из которых часто поражаются газовой пористостью.

Бронзы оловянные имеют хорошую жидкотекучесть, повышенную усадку (1,4 – 1,6%), большой интервал кристаллизации, а потому и повышенную склонность к образованию усадочной пористости в отливках. Алюминиевые бронзы имеют небольшой интервал кристаллизации, большую усадку (1,7 – 2,5 %). Отливки из них получаются плотными, но эти сплавы склонны к образованию оксидных плен из-за повышенной окисляемости содержащегося в них алюминия. Плены, попадающие в тело отливки, снижают механические свойства и герметичность изделий из алюминиевых бронз. Кремнистые бронзы, аналогично кремнистым латуням, склонны к образованию газовой пористости. Свинцовые бронзы склонны к ликвации, ухудшающей свойства отливок.

Отливки из медных сплавов при литье в кокиль часто поражены трещи-нами. Это затрудняет получение в кокилях сложных тонкостенных отливок. Главный способ предупреждения этих дефектов – хорошее раскисление и ра-финирование сплавов от шлаковых включений, увеличивающих склонность сплавов к образованию трещин.

Температура заливки медных сплавов выбирается в зависимости от их химического состава и конфигурации отливки. Для отдельных сплавов температура заливки составляет, о С: оловянные бронзы – 1150 – 1200; алюминиевые бронзы – 1100 – 1150; кремнистые латуни – 1000 – 1050; свинцовые латуни – 1000 – 1100. При этом массивные отливки заливают при температурах близких к нижнему пределу, а тонкостенные – к верхнему.

Дефекты отливок из цветных сплавов и методы их предупреждения

Общими характерными дефектами отливок при литье в кокиль являются:

  1. недоливы и неслитины при низкой температуре расплава и кокиля перед заливкой, недостаточной скорости заливки, большой газотворности стержней и красок, плохой вентиляции кокиля;
  2. усадочные дефекты (раковины, утяжины, пористость, трещины) из-за недостаточного питания массивных узлов отливки, чрезмерно высокой температуры расплава и кокиля, местного перегрева кокиля, нерациональной конструкции литниковой системы;
  3. трещины вследствие несвоевременного подрыва металлического стержня или вставки, высокой температуры заливки, нетехнологичной конст-рукции отливки;
  4. шлаковые включения при использовании загрязненных шихтовых материалов, недостаточном рафинировании сплава перед заливкой, неправильной работе литниковой системы;
  5. газовая пористость при нарушении хода плавки (использовании загрязненных влагой и маслом шихт, чрезмерно высокого перегрева, недостаточного рафинирования или раскисления сплава).

Специфические дефекты отливок из магниевых сплавов – это дефекты усадочного происхождения (пористость, трещины, рыхлоты), обусловленные широким температурным интервалом их затвердевания. Для устранения этих дефектов требуется доводка и точное соблюдение технологических режимов – температуры расплава и кокиля, применение краски и др. Часто отливки из магниевых сплавов из-за плохой работы литниковой системы поражены шлаковыми включениями, что приводит к коррозии отливки при ее эксплуатации и хранении. Такие дефекты устраняют тщательной доводкой литниковой системы.

Специфическими дефектами отливок из медных сплавов являются: газовая пористость при плохом рафинировании и очистке сплава от шлаковых частиц, вторичные оксидные плены при литье алюминиевых бронз вследствие разделения потока расплава на струи и окисления его в форме, трещины из-за плохого раскисления сплавов при плавке.

Усадка сплавов при литье и методы его компенсации

Усадка – сокращение размеров тела при переходе из расплавленного состояния в твердое или с более нагретого в менее нагретом состоянии.

Различают объемную и линейную усадку.

– Объемная усадка – уменьшение объема тела.

– Линейная усадка – уменьшение размера тела в прямолинейном направлении (по длине или ширине).

Усадка в различных материалах различна и зависит от степени их нагрева, способа охлаждения и др. Степень усадки материала характеризуется отношением уменьшенного объема изделия к начальному его объему и выражается в процентах. Сокращение объема тела при охлаждении его на 1 градус называется коэффициентом усадки. Линейную усадку металлов и их сплавов, а также других материалов можно определить дилатометром.

Читать еще:  Необрастающая краска для алюминия

Объемную усадку пластических масс в процессе их полимеризации или структурирования определяют с помощью оптического Катетометра. При изготовлении зубных протезов и лечебных аппаратов следует учитывать усадку материалов. Для более полного соответствия величины протезов, изготавливаемых подбирают материалы, имеющие минимальную усадку. Используют также такую ​​технологию изготовления и способы обработки изделий, которые наиболее полно компенсируют усадку материала. Например при отливке безпаяных мостовидных протезов из хромникелевой нержавеющей стали в качестве формовочной массы используют маршалит, пластифицированный гидролизованый этилсиликатом, или сухой кварцевый песок, который при определенном режиме термической обработки полностью компенсирует усадку стали, поэтому изготовленные протезы имеют точно определенную форму и размеры и без дополнительного препарирования зубов накладываются на опорные зубы.

При переходе металла из расплавленного состояния в твердое выделяют три периода усадки: усадка в жидком состоянии, усадка в период затвердевания и усадка в твердом состоянии.

1. Усадка металла в жидком состоянии, т.е. в состоянии от температуры заливки его в форму до появления первых кристаллов, характеризуется снижением поверхности жидкого металла в форме в следствии уменьшения объема сплава при охлаждении. Чем выше начальная температура металла, тем большее снижение уровня поверхности расплава в воронке формы для литья, однако на размеры отливки в разных ее участках и плотности массы это не влияет, так как недостаточное для заполнения формы количество сплава непрерывно поступает по литниковым ходам.

2. Усадка в период затвердения характеризуется непрерывным увеличением количества твердеющего металла и уменьшением количества его жидкой части. После затвердевания жидкой части сплава (точка S) этот период заканчивается. Затвердевание (кристаллизация) металла сначала начинается там, где наиболее низкая температура, то есть в участках соприкосновения его со стенками формы. В связи с этим контуры отливки и его размеры во втором периоде усадки почти всегда остаются постоянными. Более существенные изменения происходят внутри отливки. В связи с невозможностью поступления новой порции расплава для компенсации усадки внутри отливки в толще последней образуются усадочные полости или раковины. Объем усадочных раковин зависит от величины усадки, которая в свою очередь находится в прямой зависимости от величины отливки, степени нагрева расплава и его физико-химических свойств.

Размещение усадочных раковин зависит от размещения термического узла отливки, силы тяжести металла или силы, под воздействием которой происходит заполнение формы для литья расплавом.

На образование усадочных раковин влияет также теплопроводность формы и скорость охлаждения отливки. При искусственно замедленном охлаждении отливки можно достичь такого положения, при котором в период затвердевания усадочные микрораковины будут равномерно размещены по всему сечению отливки. При этом в разрезе или сломе деталь будет казаться хорошо отлитой, в то время как ее механические свойства действительности снижены, а плотность уменьшена. При металлографическом исследовании обнаруживается большое количество микропор.

3. Усадка в твердом состоянии. Этот период характеризуется упорядоченным расположением атомов в кристаллической решетке. Размеры этой решетки с понижением температуры уменьшается, чем объясняется уменьшение отрицательных и линейных размеров отливки. Для компенсации этой усадки следует использовать формовочные массы, имеющие достаточный коэффициент термического расширения.

Форму перед заливкой металла предварительно подогревают до температуры, при которой ее термическое расширение максимальное, и может компенсировать усадку материала в твердой фазе.

Условно разделяют усадку на три основных этапа, неправильно рассматривать эти процессы изолированно друг от друга. Усадка как в жидком, так и в твердом состоянии происходит параллельно, однако усадка жидкой части метала и сплавов чаще протекает быстрее, что обусловливает образование усадочных раковин.

На каждом этапе усадки предусмотрены свои профилактические приемы предупреждения образования усадочных раковин, однако наиболее важными из них является правильное определение термического узла и реальной компенсации усадки за счет термического расширения формы. Каждый термический узел должен иметь свой литник и дополнительный питатель (прибили).

Компенсация усадки металлов при литье достигается использованием технологических способов:

1. Изготовление моделей, которые выплавляются увеличенными на величину усадки размеров. Это достигается применением компенсационных лаков. Так, при отливке путем снятия восковых репродукций из модели (цельнолитые коронки, мостовидные протезы), препарированных зубов на модели перед восковым моделированием покрывают компенсационным лаком. При твердении лак дает пленку определенной толщины, которая соответствует величине усадки определенного сплава.

2. Применение материала типа «Адепта» для моделирования репродукций каркасов цельнолитых коронок. При этом внутренний колпачок толщиной 0,1 мм выполняет ту же функцию, что и компенсационный лак.

3. Литье каркасов съемных (бюгельных, ЧС пластиночных с металлическим базисом) на моделях с огнеупорной массы. Расширение модели компенсирует усадку сплава при отливке.

4. Построение литниковой системы с созданием резервных муфт, которые обеспечивают поступление металла в области расположения деталей каркасов, компенсируя усадку на периферии отливки.

5. Размещение литниковой системы в «центре тепла» опоки, а деталей отливки на периферии обеспечивает возможность постоянного поступления расплавленного сплава и профилактики образования пор в отливке.

6. Создание в литниковой системе дополнительных газоотводных каналов.

7. Использование для создания огнеупорных форм (опок, муфелей, формовочных масс, КТР которых соответствует величине усадки сплава, которые отливаются).

8. Использование для создания репродукций каркасов беззольных моделирующих материалов (восков, пластмасс) с минимальной усадкой.

9. Соблюдение технологии и температурных режимов при формовании и разогреве опок (муфель) и при отливке.

Ссылка на основную публикацию
Adblock
detector